Comparative Study of Three Artificial Intelligence Algorithms for the Prediction and Classification of Cardiovascular Diseases from ECG Signals: Application to Chadian Patients
DOI:
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V6I4P125Keywords:
Electrocardiogram (ECG), Artificial Neural Networks (ANN), k-Nearest Neighbors (KNN), Logistic Regression (LR), Artificial Intelligence, Cardiovascular Diseases, PredictionAbstract
In this paper, a comparative study of three artificial intelligence algorithms: Artificial Neural Networks (ANN), k-Nearest Neighbors (KNN), and Logistic Regression (LR) is conducted for the prediction and classification of cardiovascular diseases (CVD) based on electrocardiogram (ECG) data from Chadian patients.The experimental analysis relies on a dataset of 1,025 patients, comprising 14 clinical and electrocardiographic attributes, collected from local hospital databases. Model performance was evaluated using standard metrics such as accuracy, precision, recall (sensitivity), and F1-score. The results demonstrate that the ANN model outperforms the other approaches, achieving an accuracy of 99.6%, a precision of 100%, a recall of 99.4%, and an F1-score of 99.6%, compared to slightly lower performance obtained with the KNN and LR models. These findings confirm the strong potential of artificial neural networks for ECG signal analysis and decision support in the diagnosis of cardiovascular diseases. In the Chadian context, characterized by limited medical and technological resources, this approach represents a promising solution for early detection of CVD and improved patient management. However, further studies are required to validate the robustness of the proposed model on larger datasets and to integrate additional clinical risk factors.
References
1. Organisation mondiale de la santé (OMS), Maladies cardiovasculaires (MCV), 2017.
[En ligne]. Disponible : https://www.who.int/fr/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
2. M. Maleki and F. Haeri, “Identification of cardiovascular diseases through ECG classification using wavelet transformation,” arXiv preprint, arXiv:2024.xxxxx, 2024.
3. J. H. Joloudari, S. Mojrian, I. Nodehi, A. Mashmool, R. Alizadehsani, A. Mosavi, and U. R. Acharya, “Application of artificial intelligence techniques for automated detection of myocardial infarction: A review,” arXiv preprint, arXiv:2101, 2021.
4. K. H. Le, H. H. Pham, T. B. T. Nguyen, T. A. Nguyen, T. N. Thanh, and C. D. Do, “LightX3ECG: A lightweight and explainable deep learning system for 3-lead electrocardiogram classification,” arXiv preprint, arXiv:2203, 2022.
5. Z. Zhao, “Transformer-based deep learning models for ECG diagnosis: An in-depth review,” arXiv preprint, arXiv:2305, 2023.
6. H. Terghini, Conception et réalisation d’une approche de deep learning pour l’Internet des objets (IoT), Mémoire/Thèse, 2020.
7. F. Ghebouli and A. Lakroum, Application pour la classification et la migration entre classes de la maladie cardiaque, Thèse de doctorat, Université Mohamed El Bachir El Ibrahimi, Bordj Bou Arréridj, Algérie, 2021.
8. W. Caesarendra, T. A. Hishamuddin, D. T. C. Lai, A. Husaini, L. Nurhasanah, A. Glowacz, and G. A. F. Alfarisy, “An embedded system using convolutional neural network model for online and real-time ECG signal classification and prediction,” Diagnostics, vol. 12, no. 4, p. 795, 2022.
9. M. Latreche, Classification des signaux électrocardiographiques (ECG) par les réseaux de neurones artificiels, Mémoire/Thèse, 2021.
10. L. A. Behlouli and H. Hamdi, Une approche hybride AG–KNN pour la prédiction des maladies cardiaques, Thèse de doctorat, Université Akli Mohand Oulhadj–Bouira, Algérie, 2022.
11. Mhammedi, I. Yakoub, A. Ouahab, et al., La détection par apprentissage profond (Deep Learning) et métriques d’évaluation, Thèse de doctorat, Université Ahmed Draïa – Adrar, Algérie, 2021.
12. P. Virtanen et al., “SciPy 1.0: Fundamental algorithms for scientific computing in Python,” Nature Methods, vol. 17, no. 3, pp. 261–272, 2020.
13. Ameen, I. Eldesouky Fattoh, T. Abd El-Hafeez and K. Ahmed, “Advances in ECG and PCG-based cardiovascular disease classification : A review of deep learning and machine learning methods,” Journal of Big Data, vol. 11, no. 1, p. 159, 2024, doi:10.1186/s40537-024-01011-7.