Early Adoption of Predictive Analytics for Preventive Care Opportunities Using Claims and Encounter Data
DOI:
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I4P110Keywords:
Predictive Analytics, Preventive Care, Claims Data, Encounter Data, Chronic Disease, Healthcare AI, Risk Stratification, Population HealthAbstract
The integration of predictive analytics into health- care has emerged as a transformative tool in identifying preventive care opportunities. Leveraging claims and encounter data, this research explores early adoption strategies for predictive analytics models to proactively manage chronic conditions, reduce avoidable hospitalizations, and optimize care delivery. We present a scalable framework incorporating machine learning pipelines trained on structured insurance claims and encounter records from over 500,000 patients. The study emphasizes clinical relevance, cost-efficiency, and population health outcomes through model validation, risk stratification, and deployment case studies
References
1. D. J. Morgan, B. Bame, P. Zimand, P. Dooley, K. A. Thom, A. D. Harris, S. Bentzen, W. Ettinger, S. D. Garrett-Ray, J. K. Tracy, and Y. Liang, “Assessment of machine learning vs standard prediction rules for predicting hospital readmissions,” JAMA Network Open, vol. 2, no. 3, pp. e190 348–e190 348, 03 2019. [Online]. Available: https://doi.org/10.1001/jamanetworkopen.2019.0348
2. E. National Academies of Sciences, Medicine, and M. YOUNG, “Health care,” in Implementing Strategies to Enhance Public Health Surveillance of Physical Activity in the United States. National Academies Press (US), 2019. [Online]. Available: https://www.ncbi. nlm.nih.gov/books/NBK545645/
3. H. Kharrazi and J. P. Weiner, “A practical comparison between the predictive power of population-based risk stratification models using data from electronic health records versus administrative claims: setting a baseline for future ehr-derived risk stratification models,” Medical care, vol. 56, no. 2, pp. 202–203, 2018.
4. M. Altman, A. Wood, and E. Vayena, “A harm-reduction framework for algorithmic fairness,” IEEE Security & Privacy, vol. 16, no. 3, pp. 34–45, 2018.
5. S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” in Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
6. D. Cattel and F. Eijkenaar, “Value-based provider payment initiatives combining global payments with explicit quality incentives: A systematic review,” Medical Care Research and Review, vol. 77, no. 6, pp. 511–537, 2020, pMID: 31216945. [Online]. Available: https://doi.org/10.1177/1077558719856775
7. J. C. Lauffenburger, J. M. Franklin, A. A. Krumme, W. H. Shrank, O. S. Matlin, C. M. Spettell, G. Brill, and N. K. Choudhry, “Predicting adherence to chronic disease medications in patients with long-term initial medication fills using indicators of clinical events and health behaviors,” Journal of managed care & specialty pharmacy, vol. 24, no. 5, pp. 469–477, 2018, pMID: 29694288. [Online]. Available: https://doi.org/10.18553/jmcp.2018.24.5.469
8. R. Gaspersz, F. Lamers, J. M. Kent, A. T. F. Beekman, J. H. Smit, A. M. van Hemert, R. A. Schoevers, and B. W. J. H. Penninx, “Longitudinal predictive validity of the dsm-5 anxious distress specifier for clinical outcomes in a large cohort of patients with major depressive disorder,” The Journal of Clinical Psychiatry, vol. 78, no. 2, p. 1207, 2017.
9. J. B. Young, M. Gauthier-Loiselle, R. A. Bailey, A. M. Manceur, P. Lefebvre, M. Greenberg, M.-H. Lafeuille, M. S. Duh, B. Bookhart, and C. H. Wysham, “Development of predictive risk models for major adverse cardiovascular events among patients with type 2 diabetes mellitus using health insurance claims data,” Cardiovascular diabetology, vol. 17, pp. 1–13, 2018. [Online]. Available: https: //doi.org/10.1186/s12933-018-0759-z
10. B. N. Becker, “Managing populations,” in Population Health. Productivity Press, 2015, pp. 68–87. [On- line]. Available: https://www.taylorfrancis.com/chapters/edit/10.1201/ b19266-8/managing-populations-bryan-becker
11. G. Corrao, F. Rea, M. Di Martino, R. De Palma, S. Scondotto, D. Fusco, A. Lallo, L. M. B. Belotti, M. Ferrante, S. Pollina Addario, L. Merlino, G. Mancia, and F. Carle, “Developing and validating a novel multisource comorbidity score from administrative data: a large population-based cohort study from italy,” BMJ Open, vol. 7, no. 12, 2017. [Online]. Available: https://bmjopen.bmj.com/content/7/12/e019503
12. V. K. Verma and W.-Y. Lin, “A machine learning-based predictive model for 30-day hospital readmission prediction for copd patients,” in 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2020, pp. 994–999.
13. D. V. Gunasekeran, D. S. Ting, G. S. Tan, and T. Y. Wong, “Artificial intelligence for diabetic retinopathy screening, prediction and management,” Current opinion in ophthalmology, vol. 31, no. 5, pp. 357–365, 2020. [Online]. Avail- able: https://journals.lww.com/co-ophthalmology/fulltext/2020/09000/ artificial intelligence for diabetic retinopathy.9.aspx
14. Z. Obermeyer, B. Powers, C. Vogeli, and S. Mullainathan, “Dissecting racial bias in an algorithm used to manage the health of populations,” Science, vol. 366, no. 6464, pp. 447–453, 2019. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.aax2342