Review of Machine Learning Models for Healthcare Business Intelligence and Decision Support

Authors

  • Venkata Deepak Namburi University of Central Missouri, Department of Computer Science. Author
  • Vetrivelan Tamilmani Principal Service Architect, SAP America. Author
  • Aniruddha Arjun Singh Singh ADP, Sr. Implementation Project Manager, aniruddha. Author
  • Vaibhav Maniar Oklahoma City University, MBA / Product Management. Author
  • Rami Reddy Kothamaram California University of management and science, MS in Computer Information systems. Author
  • Dinesh Rajendran Coimbatore Institute of Technology, MSC. Software Engineering. Author

DOI:

https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I3P110

Keywords:

Machine Learning, Healthcare Business Intelligence, Decision Support Systems, Clinical Decision Support, Personalized Medicine, Predictive Analytics

Abstract

The use of machine learning (ML) has probable to revolutionize healthcare, enabling the extraction of meaningful insights from complex and heterogeneous datasets. The capacity of healthcare systems to facilitate evidence-based decision-making is improved through the integration of many data sources, such as medical imaging, electronic health records, patient-generated, genomic profiles, data, and administrative information. Supervised, unsupervised, and reinforcement learning approaches facilitate accurate diagnosis, risk prediction, patient stratification, and personalized treatment recommendations, while ensemble methods improve predictive robustness and reliability. Machine learning applications extend to operational domains, optimizing patient flow, resource allocation, and appointment scheduling, thereby improving efficiency and reducing costs. Clinical decision support systems benefit from adaptive and real-time analytics, enabling timely interventions and improved patient results. The convergence of ML with business intelligence in healthcare allows stakeholders, including clinicians, administrators, and policymakers, to leverage data-driven strategies for both patient-centered care and institutional management. This review synthesizes current methodologies, applications, and emerging opportunities, delivering a complete resource for researchers and practitioners seeking to employ ML in healthcare business intelligence and decision support

References

S. Dash, S. K. Shakyawar, M. Sharma, and S. Kaushik, “Big data in healthcare: management, analysis and future prospects,” J. Big Data, 2019, doi: 10.1186/s40537-019-0217-0.

[2] C. Naugler and D. L. Church, “Automation and artificial intelligence in the clinical laboratory,” Crit. Rev. Clin. Lab. Sci., vol. 56, no. 2, pp. 98–110, 2019, doi: 10.1080/10408363.2018.1561640.

[3] M. Chen and M. Decary, “Artificial intelligence in healthcare: An essential guide for health leaders,” Healthc. Manag. Forum, vol. 33, p. 084047041987312, 2019, doi: 10.1177/0840470419873123.

[4] S. Gupta, N. Agrawal, and S. Gupta, “A Review on Search Engine Optimization: Basics,” Int. J. Hybrid Inf. Technol., vol. 9, no. 5, pp. 381–390, May 2016, doi: 10.14257/ijhit.2016.9.5.32.

[5] A. E. W. Johnson, M. M. Ghassemi, S. Nemati, K. E. Niehaus, D. Clifton, and G. D. Clifford, “Machine Learning and Decision Support in Critical Care,” Proc. IEEE, vol. 104, no. 2, pp. 444–466, Feb. 2016, doi: 10.1109/JPROC.2015.2501978.

[6] D. D. Rao, “Multimedia Based Intelligent Content Networking for Future Internet,” in 2009 Third UKSim European Symposium on Computer Modeling and Simulation, IEEE, 2009, pp. 55–59. doi: 10.1109/EMS.2009.108.

[7] T. Hulsen et al., “From Big Data to Precision Medicine,” Front. Med., vol. 6, pp. 1–14, Mar. 2019, doi: 10.3389/fmed.2019.00034.

[8] S. Pahune, “Sensor Data Collection and Performance Evaluation using A TK1 Board,” University of Memphis, 2019.

[9] R. R. Aguirre, O. Suarez, M. Fuentes, and M. A. Sanchez-Gonzalez, “Electronic Health Record Implementation: A Review of Resources and Tools,” Cureus, vol. 11, no. 9, 2019, doi: 10.7759/cureus.5649.

[10] D. Ganguly, S. Chakraborty, M. Balitanas, and T. Kim, “Medical Imaging: A Review,” 2010, pp. 504–516. doi: 10.1007/978-3-642-16444-6_63.

[11] M. Shapiro, D. Johnston, J. Wald, and D. Mon, “Patient-Generated Health Data,” RTI Int., 2012.

[12] P. Pathak, A. Shrivastava, and S. Gupta, “A survey on various security issues in delay tolerant networks,” J Adv Shell Program., vol. 2, no. 2, pp. 12–18, 2015.

[13] M. A. Ahmad, A. Teredesai, and C. Eckert, “Interpretable Machine Learning in Healthcare,” Proc. - 2018 IEEE Int. Conf. Healthc. InformatiMs, ICHI 2018, p. 447, 2018, doi: 10.1109/ICHI.2018.00095.

[14] K. Shailaja, B. Seetharamulu, and M. A. Jabbar, “Machine Learning in Healthcare: A Review,” in Proceedings of the 2nd International Conference on Electronics, Communication and Aerospace Technology, ICECA 2018, 2018. doi: 10.1109/ICECA.2018.8474918.

[15] A. Thapliyal, P. S. Bhagavathi, T. Arunan, and D. D. Rao, “Realizing Zones Using UPnP,” in 2009 6th IEEE Consumer Communications and Networking Conference, IEEE, Jan. 2009, pp. 1–5. doi: 10.1109/CCNC.2009.4784867.

[16] H. K. Gianey and R. Choudhary, “Comprehensive Review On Supervised Machine Learning Algorithms,” in Proceedings - 2017 International Conference on Machine Learning and Data Science, MLDS 2017, 2017. doi: 10.1109/MLDS.2017.11.

[17] J. Wiens and E. S. Shenoy, “Machine Learning for Healthcare: On the Verge of a Major Shift in Healthcare Epidemiology,” Clin. Infect. Dis., 2018, doi: 10.1093/cid/cix731.

[18] M. I. Mashinchi, A. Ojo, and F. J. Sullivan, “Analysis of Business Intelligence Applications in Healthcare Organizations,” in Proceedings of the Annual Hawaii International Conference on System Sciences, 2019, pp. 4155–4164. doi: 10.24251/HICSS.2019.503.

[19] A. O. Badheka et al., “ST-T Wave Abnormality in Lead aVR and Reclassification of Cardiovascular Risk (from the National Health and Nutrition Examination Survey-III),” Am. J. Cardiol., vol. 112, no. 6, pp. 805–810, Sep. 2013, doi: 10.1016/j.amjcard.2013.04.058.

[20] E. S. Berner, “Clinical decision support systems: state of the art,” Agency Healthc. Res. Qual., no. 09, pp. 4–20, 2009.

[21] R. Gualandi, C. Masella, and D. Tartaglini, “Improving hospital patient flow: a systematic review,” Bus. Process Manag. J., vol. 26, no. 6, pp. 1541–1575, Dec. 2019, doi: 10.1108/BPMJ-10-2017-0265.

[22] V. Mishra, P. Chanda, M. M. Tambuwala, and A. Suttee, “Personalized medicine: An overview,” Int. J. Pharm. Qual. Assur., vol. 10, no. 2, pp. 290–294, 2019, doi: 10.25258/ijpqa.10.2.13.

[23] S. Gupta, N. Parmar, and S. Kant, “Emergency medical services and disaster management,” New Delhi Gaypee Inc, 2004.

[24] T. P. Carvalho, F. A. A. M. N. Soares, R. Vita, R. da P. Francisco, J. P. Basto, and S. G. S. Alcalá, “A systematic literature review of machine learning methods applied to predictive maintenance,” Comput. Ind. Eng., vol. 137, Nov. 2019, doi: 10.1016/j.cie.2019.106024.

[25] L. Bote-Curiel, S. Muñoz-Romero, A. Gerrero-Curieses, and J. L. Rojo-álvarez, “Deep learning and big data in healthcare: A double review for critical beginners,” Appl. Sci., vol. 9, no. 11, 2019, doi: 10.3390/app9112331.

[26] G. Harerimana, B. Jang, J. W. Kim, and H. K. Park, “Health big data analytics: A technology survey,” IEEE Access, vol. 6, pp. 65661–65678, 2018, doi: 10.1109/ACCESS.2018.2878254.

[27] M. Chen, Y. Hao, K. Hwang, L. Wang, and L. Wang, “Predicción de enfermedades mediante aprendizaje automático a partir de big data de comunidades sanitarias,” IEEE Access, vol. 5, pp. 8869–8879, 2017.

[28] M. Somvanshi, P. Chavan, S. Tambade, and S. V. Shinde, “A review of machine learning techniques using decision tree and support vector machine,” in 2016 International Conference on Computing Communication Control and automation (ICCUBEA), IEEE, Aug. 2016, pp. 1–7. doi: 10.1109/ICCUBEA.2016.7860040.

[29] A. Belle, R. Thiagarajan, S. M. R. Soroushmehr, F. Navidi, D. A. Beard, and K. Najarian, “Big data analytics in healthcare,” Biomed Res. Int., vol. 2015, 2015, doi: 10.1155/2015/370194.

[30] Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Vangala, S. R. (2021). Big Text Data Analysis for Sentiment Classification in Product Reviews Using Advanced Large Language Models. International Journal of AI, BigData, Computational and Management Studies, 2(2), 55-65.

[31] Gangineni, V. N., Tyagadurgam, M. S. V., Chalasani, R., Bhumireddy, J. R., & Penmetsa, M. (2021). Strengthening Cybersecurity Governance: The Impact of Firewalls on Risk Management. International Journal of AI, BigData, Computational and Management Studies, 2, 10-63282.

[32] Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., & Gangineni, V. N. (2021). An Advanced Machine Learning Models Design for Fraud Identification in Healthcare Insurance. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 26-34.

[33] Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., & Polam, R. M. (2021). Advanced Machine Learning Models for Detecting and Classifying Financial Fraud in Big Data-Driven. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(3), 39-46.

[34] Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., & Chalasani, R. (2021). Enhancing IoT (Internet of Things) Security Through Intelligent Intrusion Detection Using ML Models. International Journal of Emerging Research in Engineering and Technology, 2(1), 27-36.

[35] Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., & Chundru, S. K. (2021). Smart Healthcare: Machine Learning-Based Classification of Epileptic Seizure Disease Using EEG Signal Analysis. International Journal of Emerging Research in Engineering and Technology, 2(3), 61-70.

[36] Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., Polam, R. M., & Kamarthapu, B. (2021). Big Data and Predictive Analytics for Customer Retention: Exploring the Role of Machine Learning in E-Commerce. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 26-34.

[37] Penmetsa, M., Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., & Pabbineedi, S. (2021). Next-Generation Cybersecurity: The Role of AI and Quantum Computing in Threat Detection. International Journal of Emerging Trends in Computer Science and Information Technology, 2(4), 54-61.

[38] Polu, A. R., Vattikonda, N., Gupta, A., Patchipulusu, H., Buddula, D. V. K. R., & Narra, B. (2021). Enhancing Marketing Analytics in Online Retailing through Machine Learning Classification Techniques. Available at SSRN 5297803.

[39] Polu, A. R., Buddula, D. V. K. R., Narra, B., Gupta, A., Vattikonda, N., & Patchipulusu, H. (2021). Evolution of AI in Software Development and Cybersecurity: Unifying Automation, Innovation, and Protection in the Digital Age. Available at SSRN 5266517.

[40] Polu, A. R., Vattikonda, N., Buddula, D. V. K. R., Narra, B., Patchipulusu, H., & Gupta, A. (2021). Integrating AI-Based Sentiment Analysis With Social Media Data For Enhanced Marketing Insights. Available at SSRN 5266555.

[41] Buddula, D. V. K. R., Patchipulusu, H. H. S., Polu, A. R., Vattikonda, N., & Gupta, A. K. (2021). INTEGRATING AI-BASED SENTIMENT ANALYSIS WITH SOCIAL MEDIA DATA FOR ENHANCED MARKETING INSIGHTS. Journal Homepage: http://www. ijesm. co. in, 10(2).

[42] Gupta, A. K., Buddula, D. V. K. R., Patchipulusu, H. H. S., Polu, A. R., Narra, B., & Vattikonda, N. (2021). An Analysis of Crime Prediction and Classification Using Data Mining Techniques.

Downloads

Published

2022-06-30

Issue

Section

Articles

How to Cite

1.
Namburi VD, Tamilmani V, Singh Singh AA, Maniar V, Kothamaram RR, Rajendran D. Review of Machine Learning Models for Healthcare Business Intelligence and Decision Support. IJAIBDCMS [Internet]. 2022 Jun. 30 [cited 2025 Dec. 7];3(3):82-90. Available from: https://ijaibdcms.org/index.php/ijaibdcms/article/view/285