AI-Driven Indexing Strategies

Authors

  • Nagireddy Karri Senior IT Administrator Database, Sherwin-Williams, USA. Author
  • Sandeep Kumar Jangam Lead Consultant, Infosys Limited, USA. Author
  • Partha Sarathi Reddy Pedda Muntala Software Developer at Cisco Systems, Inc, USA. Author

DOI:

https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I2P112

Keywords:

AI, Indexing, Machine Learning, Deep Learning, Natural Language Processing, Information Retrieval, Query Optimization

Abstract

Artificial Intelligence (AI) has transformed to manage, retrieve, and organize information within various fields. Indexing, which is a main feature of database and information retrieval systems, has been based on rule based and heuristic indexing. Nevertheless, as the amount and complexity of information grow, such traditional forms of indexing are no longer enough. The AI-based indexing approaches make use of machine learning (ML), natural language processing (NLP) and deep learning algorithms to automatically generate, optimize, and maintain indexes to enhance search efficiency, query performance, and data accessibility. The paper will provide an extensive discussion of AI-based indexing methods with emphasis on recent developments, issues and application in practice. It also examines the effect of AI indexing on query response time, storage optimization, and retrieval accuracy to provide a direction of future research and implementation

References

1. Samoladas, D., Karras, C., Karras, A., Theodorakopoulos, L., & Sioutas, S. (2022, November). Tree data structures and efficient indexing techniques for big data management: A comprehensive study. In Proceedings of the 26th Pan-Hellenic Conference on Informatics (pp. 123-132).

2. Tekale, K. M., & Rahul, N. (2022). AI and Predictive Analytics in Underwriting, 2022 Advancements in Machine Learning for Loss Prediction and Customer Segmentation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 95-113. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P111

3. Gupta, N., Chen, P., Yu, H. F., Hsieh, C. J., & Dhillon, I. (2022). Elias: End-to-end learning to index and search in large output spaces. Advances in Neural Information Processing Systems, 35, 19798-19809.

4. Mackenzie, J., Mallia, A., Moffat, A., & Petri, M. (2022, December). Accelerating learned sparse indexes via term impact decomposition. In Findings of the Association for Computational Linguistics: EMNLP 2022 (pp. 2830-2842).

5. Bigerl, A., Conrads, L., Behning, C., Saleem, M., & Ngonga Ngomo, A. C. (2022, October). Hashing the hypertrie: Space-and time-efficient indexing for SPARQL in tensors. In International Semantic Web Conference (pp. 57-73). Cham: Springer International Publishing.

6. Retkowitz, D., & Stegelmann, M. (2008, June). Dynamic adaptability for smart environments. In IFIP International Conference on Distributed Applications and Interoperable Systems (pp. 154-167). Berlin, Heidelberg: Springer Berlin Heidelberg.

7. Tekale, K. M. (2022). Claims Optimization in a High-Inflation Environment Provide Frameworks for Leveraging Automation and Predictive Analytics to Reduce Claims Leakage and Accelerate Settlements. International Journal of Emerging Research in Engineering and Technology, 3(2), 110-122. https://doi.org/10.63282/3050-922X.IJERET-V3I2P112

8. Bahrami, A., Yuan, J., Smart, P. R., & Shadbolt, N. R. (2007, October). Context aware information retrieval for enhanced situation awareness. In MILCOM 2007-IEEE Military Communications Conference (pp. 1-6). IEEE.

9. Manolopoulos, Y., Theodoridis, Y., & Tsotras, V. (2012). Advanced database indexing (Vol. 17). Springer Science & Business Media.

10. Bertino, E., Ooi, B. C., Sacks-Davis, R., Tan, K. L., Zobel, J., Shidlovsky, B., & Andronico, D. (2012). Indexing techniques for advanced database systems (Vol. 8). Springer Science & Business Media.

11. Gani, A., Siddiqa, A., Shamshirband, S., & Hanum, F. (2016). A survey on indexing techniques for big data: taxonomy and performance evaluation. Knowledge and information systems, 46(2), 241-284.

12. Gour, A. (2020). AI-based natural language processing (NLP) systems. Journal of Algebraic Statistics, 11(1), 48-58.

13. Kaswan, K. S., Gaur, L., Dhatterwal, J. S., & Kumar, R. (2021). AI-based natural language processing for the generation of meaningful information electronic health record (EHR) data. In Advanced AI techniques and applications in bioinformatics (pp. 41-86). CRC Press.

14. Pouyanfar, S., Yang, Y., Chen, S. C., Shyu, M. L., & Iyengar, S. S. (2018). Multimedia big data analytics: A survey. ACM computing surveys (CSUR), 51(1), 1-34.

15. In International conference on intelligent data communication technologies and internet of things (pp. 758-763). Cham: Springer International Publishing.

16. Sinaga, K. P., & Yang, M. S. (2020). Unsupervised K-means clustering algorithm. IEEE access, 8, 80716-80727.

17. Wang, W., Huang, Y., Wang, Y., & Wang, L. (2014). Generalized autoencoder: A neural network framework for dimensionality reduction. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops (pp. 490-497).

18. Tekale, K. M. T., & Enjam, G. reddy . (2022). The Evolving Landscape of Cyber Risk Coverage in P&C Policies. International Journal of Emerging Trends in Computer Science and Information Technology, 3(3), 117-126. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P113

19. Frachtenberg, E. (2009). Reducing query latencies in web search using fine-grained parallelism. World Wide Web, 12(4), 441-460.

20. Zhang, H., Andersen, D. G., Pavlo, A., Kaminsky, M., Ma, L., & Shen, R. (2016, June). Reducing the storage overhead of main-memory OLTP databases with hybrid indexes. In Proceedings of the 2016 International Conference on Management of Data (pp. 1567-1581).

21. Christen, P. (2011). A survey of indexing techniques for scalable record linkage and deduplication. IEEE transactions on knowledge and data engineering, 24(9), 1537-1555.

22. Cai, D., He, X., & Han, J. (2005). Document clustering using locality preserving indexing. IEEE transactions on knowledge and data engineering, 17(12), 1624-1637.

23. Lakarasu, P. (2022). AI-Driven Data Engineering: Automating Data Quality, Lineage, and Transformation in Cloud-Scale Platforms. Lineage, and Transformation in Cloud-scale Platforms (December 10, 2022).

Downloads

Published

2023-06-30

Issue

Section

Articles

How to Cite

1.
Karri N, Jangam SK, Pedda Muntala PSR. AI-Driven Indexing Strategies. IJAIBDCMS [Internet]. 2023 Jun. 30 [cited 2025 Oct. 29];4(2):111-9. Available from: https://ijaibdcms.org/index.php/ijaibdcms/article/view/274