Evaluating the ROI of Embedded AI Capabilities in Oracle Fusion ERP

Authors

  • Partha Sarathi Reddy Pedda Muntala Independent Researcher, USA. Author
  • Nagireddy Karri Independent Researcher, USA. Author

DOI:

https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P112

Keywords:

ROI, Oracle Fusion ERP, Embedded AI, Predictive Analytics, Automation, Case Studies, Financial Metrics, ERP Efficiency

Abstract

Over the past couple of years, Enterprise Resource Planning (ERP) systems have acquired new forms and capabilities, as they incorporate innovative technologies like Artificial Intelligence (AI) to improve business processes and decision-making. Oracle Fusion ERP is leading the front in this revolution, as it has built-in AI capabilities that make it promising in terms of automation, predictive analytics, and learner operations. The purpose of this paper is to assess the Return on Investment (ROI) of using AI in Oracle Fusion ERP integration. Drawing on real-world examples in the form of case studies, we will examine key financial indicators, including cost reduction, income generation, operational efficiency, and user productivity. Firms such as Vodafone, Western Digital, and Cummins have already implemented Oracle Fusion ERP with AI features and have registered significant positive changes. We have employed both qualitative and quantitative data analyses in our methodology, which involves surveys, interviews, and a review of financial data. Notable results indicate that the ROI within 18-24 months is significant, driven by a decrease in manual transactions, improved compliance, and intelligent forecasting. We are also giving problems that have been encountered in the implementation of AI and how returns can be maximized

References

1. Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard business review, 96(1), 108-116.

2. Benders, J., & Van Veen, K. (2001). What's in a fashion? Interpretative viability and management fashions. Organization, 8(1), 33-53.

3. Shang, S., & Seddon, P. B. (2002). Assessing and managing the benefits of enterprise systems: the business manager's perspective. Information systems journal, 12(4), 271-299.

4. Westerman, G., Bonnet, D., & McAfee, A. (2014). Leading digital: Turning technology into business transformation. Harvard Business Press.

5. McAfee, A., & Brynjolfsson, E. (2017). Machine, platform, crowd: Harnessing our digital future. WW Norton & Company.

6. Al‐Mashari, M., & Al‐Mudimigh, A. (2003). ERP implementation: lessons from a case study. Information Technology & People, 16(1), 21-33.

7. Thakker, T. (2015). Introduction to Oracle Fusion Applications. In Pro Oracle Fusion Applications: Installation and Administration (pp. 3-22). Berkeley, CA: Apress.

8. Steve T. K. Jan; Vatche Ishakian; Vinod Muthusamy (2020) – AI Trust in Business Processes: The Need for Process Aware Explanations.

9. Xinyu Zhang (2022) – A Hybrid Cloud ERP Framework For Processing Purchasing Data arXiv

(Though not focused on AI or ROI, this may offer context around cloud ERP efficiency.).

10. Goundar, S., Nayyar, A., Maharaj, M., Ratnam, K., & Prasad, S. (2021). How Artificial Intelligence Is Transforming ERP Systems. Enterprise systems and technological convergence: Research and practice, 85.

11. Lee, Singh & Azamfar (2019) discuss industrial AI deployment and its economic impacts, providing insights into how AI can drive operational efficiencies—an indirect but valuable lens for ROI analysis.

12. Rihter, J. D., Zivkov, E., & Nerandzic, B. (2017). Improving the process of managing by accelerating financial reporting through the implementation of a fast closing process. In the XVII International Scientific Conference on Industrial Systems (IS’17), University of Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia. Retrieved from https://www. iim. ftn. Uns. Ac. Rs/is17/papers/77. pdf.

13. Aleksander Slominski, Vinod Muthusamy, Vatche Ishakian (2019) Towards Enterprise Ready AI Deployments Minimizing the Risk of Consuming AI Models in Business Applications.

14. Fontana, R. M., & Iarozinski Neto, A. (2009). ERP systems implementation in complex organizations. JISTEM-Journal of Information Systems and Technology Management, 6, 61-92.

15. Parthasarathy, S., & Padmapriya, S. T. (2023). Understanding algorithm bias in artificial intelligence-enabled ERP software customization. Journal of Ethics in Entrepreneurship and Technology, 3(2), 79-93.

16. Naydenov, M. (Nucleus Research). (April 2021). The ROI Framework for Oracle Cloud ERP (Research Note W58). Nucleus Research / Oracle.

17. Buhmann, A., & Gregory, A. (2023). Artificial intelligence: implications for corporate communication roles and responsibilities. Handbook on digital corporate communication.

18. Pirker, G., & Wimmer, A. (2017). Sustainable power generation with large gas engines. Energy Conversion and Management, 149, 1048-1065.

19. Naheem, M. A. (2018). Illicit Financial Flows: A Case Study of HSBC. Journal of Money Laundering Control, 21(2), 231-246.

20. Emam, A. Z. (2013, December). Critical success factors model for business intelligent over ERP cloud. In the 2013 International Conference on IT Convergence and Security (ICITCS) (pp. 1-5). IEEE.

21. Pappula, K. K. (2020). Browser-Based Parametric Modeling: Bridging Web Technologies with CAD Kernels. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 56-67. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P107

22. Rahul, N. (2020). Vehicle and Property Loss Assessment with AI: Automating Damage Estimations in Claims. International Journal of Emerging Research in Engineering and Technology, 1(4), 38-46. https://doi.org/10.63282/3050-922X.IJERET-V1I4P105

23. Enjam, G. R., & Chandragowda, S. C. (2020). Role-Based Access and Encryption in Multi-Tenant Insurance Architectures. International Journal of Emerging Trends in Computer Science and Information Technology, 1(4), 58-66. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I4P107

24. Rusum, G. P., Pappula, K. K., & Anasuri, S. (2020). Constraint Solving at Scale: Optimizing Performance in Complex Parametric Assemblies. International Journal of Emerging Trends in Computer Science and Information Technology, 1(2), 47-55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I2P106

25. Pappula, K. K., & Anasuri, S. (2021). API Composition at Scale: GraphQL Federation vs. REST Aggregation. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 54-64. https://doi.org/10.63282/3050-9246.IJETCSIT-V2I2P107

26. Rahul, N. (2021). AI-Enhanced API Integrations: Advancing Guidewire Ecosystems with Real-Time Data. International Journal of Emerging Research in Engineering and Technology, 2(1), 57-66. https://doi.org/10.63282/3050-922X.IJERET-V2I1P107

27. Enjam, G. R., Chandragowda, S. C., & Tekale, K. M. (2021). Loss Ratio Optimization using Data-Driven Portfolio Segmentation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 54-62. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P107

28. Rusum, G. P. (2022). Security-as-Code: Embedding Policy-Driven Security in CI/CD Workflows. International Journal of AI, BigData, Computational and Management Studies, 3(2), 81-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I2P108

29. Pappula, K. K. (2022). Modular Monoliths in Practice: A Middle Ground for Growing Product Teams. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 53-63. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P106

30. Jangam, S. K., Karri, N., & Pedda Muntala, P. S. R. (2022). Advanced API Security Techniques and Service Management. International Journal of Emerging Research in Engineering and Technology, 3(4), 63-74. https://doi.org/10.63282/3050-922X.IJERET-V3I4P108

31. Anasuri, S. (2022). Zero-Trust Architectures for Multi-Cloud Environments. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 64-76. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P107

32. Rahul, N. (2022). Enhancing Claims Processing with AI: Boosting Operational Efficiency in P&C Insurance. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 77-86. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P108

33. Enjam, G. R., & Tekale, K. M. (2022). Predictive Analytics for Claims Lifecycle Optimization in Cloud-Native Platforms. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 95-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P110

34. Rusum, G. P. (2023). Large Language Models in IDEs: Context-Aware Coding, Refactoring, and Documentation. International Journal of Emerging Trends in Computer Science and Information Technology, 4(2), 101-110. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I2P110

35. Pappula, K. K., & Rusum, G. P. (2023). Multi-Modal AI for Structured Data Extraction from Documents. International Journal of Emerging Research in Engineering and Technology, 4(3), 75-86. https://doi.org/10.63282/3050-922X.IJERET-V4I3P109

36. Jangam, S. K. (2023). Importance of Encrypting Data in Transit and at Rest Using TLS and Other Security Protocols and API Security Best Practices. International Journal of AI, BigData, Computational and Management Studies, 4(3), 82-91. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P109

37. Anasuri, S., & Pappula, K. K. (2023). Green HPC: Carbon-Aware Scheduling in Cloud Data Centers. International Journal of Emerging Research in Engineering and Technology, 4(2), 106-114. https://doi.org/10.63282/3050-922X.IJERET-V4I2P111

38. Rahul, N. (2023). Personalizing Policies with AI: Improving Customer Experience and Risk Assessment. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 85-94. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P110

39. Enjam, G. R. (2023). Optimizing PostgreSQL for High-Volume Insurance Transactions & Secure Backup and Restore Strategies for Databases. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 104-111. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P112

40. Pappula, K. K., & Rusum, G. P. (2020). Custom CAD Plugin Architecture for Enforcing Industry-Specific Design Standards. International Journal of AI, BigData, Computational and Management Studies, 1(4), 19-28. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P103

41. Rahul, N. (2020). Optimizing Claims Reserves and Payments with AI: Predictive Models for Financial Accuracy. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 46-55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106

42. Enjam, G. R. (2020). Ransomware Resilience and Recovery Planning for Insurance Infrastructure. International Journal of AI, BigData, Computational and Management Studies, 1(4), 29-37. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104

43. Pappula, K. K., & Rusum, G. P. (2021). Designing Developer-Centric Internal APIs for Rapid Full-Stack Development. International Journal of AI, BigData, Computational and Management Studies, 2(4), 80-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I4P108

44. Rahul, N. (2021). Strengthening Fraud Prevention with AI in P&C Insurance: Enhancing Cyber Resilience. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 43-53. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P106

45. Enjam, G. R., & Chandragowda, S. C. (2021). RESTful API Design for Modular Insurance Platforms. International Journal of Emerging Research in Engineering and Technology, 2(3), 71-78. https://doi.org/10.63282/3050-922X.IJERET-V2I3P108

46. Rusum, G. P., & Pappula, K. K. (2022). Federated Learning in Practice: Building Collaborative Models While Preserving Privacy. International Journal of Emerging Research in Engineering and Technology, 3(2), 79-88. https://doi.org/10.63282/3050-922X.IJERET-V3I2P109

47. Pappula, K. K. (2022). Containerized Zero-Downtime Deployments in Full-Stack Systems. International Journal of AI, BigData, Computational and Management Studies, 3(4), 60-69. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P107

48. Jangam, S. K., & Pedda Muntala, P. S. R. (2022). Role of Artificial Intelligence and Machine Learning in IoT Device Security. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 77-86. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P108

49. Anasuri, S., Rusum, G. P., & Pappula, kiran K. (2022). Blockchain-Based Identity Management in Decentralized Applications. International Journal of AI, BigData, Computational and Management Studies, 3(3), 70-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I3P109

50. Rahul, N. (2022). Optimizing Rating Engines through AI and Machine Learning: Revolutionizing Pricing Precision. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(3), 93-101. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I3P110

51. Enjam, G. R. (2022). Energy-Efficient Load Balancing in Distributed Insurance Systems Using AI-Optimized Switching Techniques. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 68-76. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P108

52. Rusum, G. P. (2023). Secure Software Supply Chains: Managing Dependencies in an AI-Augmented Dev World. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(3), 85-97. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I3P110

53. Pappula, K. K. (2023). Reinforcement Learning for Intelligent Batching in Production Pipelines. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 76-86. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P109

54. Jangam, S. K., & Karri, N. (2023). Robust Error Handling, Logging, and Monitoring Mechanisms to Effectively Detect and Troubleshoot Integration Issues in MuleSoft and Salesforce Integrations. International Journal of Emerging Research in Engineering and Technology, 4(4), 80-89. https://doi.org/10.63282/3050-922X.IJERET-V4I4P108

55. Anasuri, S. (2023). Confidential Computing Using Trusted Execution Environments. International Journal of AI, BigData, Computational and Management Studies, 4(2), 97-110. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I2P111

56. Rahul, N. (2023). Transforming Underwriting with AI: Evolving Risk Assessment and Policy Pricing in P&C Insurance. International Journal of AI, BigData, Computational and Management Studies, 4(3), 92-101. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P110

57. Enjam, G. R. (2023). AI Governance in Regulated Cloud-Native Insurance Platforms. International Journal of AI, BigData, Computational and Management Studies, 4(3), 102-111. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P111

58. Pappula, K. K., Anasuri, S., & Rusum, G. P. (2021). Building Observability into Full-Stack Systems: Metrics That Matter. International Journal of Emerging Research in Engineering and Technology, 2(4), 48-58. https://doi.org/10.63282/3050-922X.IJERET-V2I4P106

59. Rusum, G. P. (2022). WebAssembly across Platforms: Running Native Apps in the Browser, Cloud, and Edge. International Journal of Emerging Trends in Computer Science and Information Technology, 3(1), 107-115. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P112

60. Jangam, S. K. (2022). Self-Healing Autonomous Software Code Development. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 42-52. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P105

61. Anasuri, S. (2022). Adversarial Attacks and Defenses in Deep Neural Networks. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 77-85. https://doi.org/10.63282/xs971f03

62. Rusum, G. P., & Anasuri, S. (2023). Composable Enterprise Architecture: A New Paradigm for Modular Software Design. International Journal of Emerging Research in Engineering and Technology, 4(1), 99-111. https://doi.org/10.63282/3050-922X.IJERET-V4I1P111

63. Jangam, S. K., & Pedda Muntala, P. S. R. (2023). Challenges and Solutions for Managing Errors in Distributed Batch Processing Systems and Data Pipelines. International Journal of Emerging Research in Engineering and Technology, 4(4), 65-79. https://doi.org/10.63282/3050-922X.IJERET-V4I4P107

64. Anasuri, S. (2023). Secure Software Supply Chains in Open-Source Ecosystems. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 62-74. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P108

65. Enjam, G. R. (2023). Modernizing Legacy Insurance Systems with Microservices on Guidewire Cloud Platform. International Journal of Emerging Research in Engineering and Technology, 4(4), 90-100. https://doi.org/10.63282/3050-922X.IJERET-V4I4P109

Downloads

Published

2024-03-30

Issue

Section

Articles

How to Cite

1.
Pedda Muntala PSR, Karri N. Evaluating the ROI of Embedded AI Capabilities in Oracle Fusion ERP. IJAIBDCMS [Internet]. 2024 Mar. 30 [cited 2025 Oct. 6];5(1):114-26. Available from: https://ijaibdcms.org/index.php/ijaibdcms/article/view/251