Platform Engineering: Empowering Developers with Internal Developer Platforms (IDPs)
DOI:
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V5I1P110Keywords:
Platform Engineering, Internal Developer Platforms (IDPs), DevOps, Developer Experience (DevEx), CI/CD, Infrastructure as Code (IaC), Self-Service Portals, Observability, Cloud-NativeAbstract
Software systems are becoming increasingly more complicated, and organizations must contend with balancing the development velocity with the operational reliability. Platform engineering is a new field that can handle such a challenge as the construction of Internal Developer Platforms (IDPs), the so-called secure, self-service, and scalable spaces built to manage software delivery lifecycle, in contrast to the traditional DevOps practice, which often leaves developers with low-level infrastructure details to consider, IDPs abstract complexity, allowing developers to build, test, and deploy software independently using curated interfaces, reusable templates, and automated pipelines. This paper delivers a discussion of principles, architecture, and major aspects of IDPs, such as self-service portal, infrastructure-as-code (IaC), CI/CD automation, observability, and policy enforcement. It analyses the way IDPs enhance the productivity of developers and neutralize operations, and increase governance at scale. Supported by empirical demonstrations of platform engineering practised by companies such as Spotify, Netflix, Dynatrace, and Uplight, the paper presents the two sides of platform engineering, including its positive and negative implications. It also mentions some new trends, such as AI-driven orchestration, low-code/no-code integration, and improved developer experience (DevEx), as essential drivers in defining the future of IDPs. This paper supports the notion that establishing platform engineering as a strategic DevOps capability reemphasises the importance of prioritising the significance of enabling resilient, efficient, and developer-friendly software delivery ecosystems. It is a technical and organisational guide for teams embracing IDPs in contemporary, cloud-native contexts
References
1. Zutshi, A., & Grilo, A. (2019). The emergence of digital platforms: A conceptual platform architecture and impact on industrial engineering. Computers & Industrial Engineering, 136, 546-555.
2. Colantoni, A., Berardinelli, L., & Wimmer, M. (2020, October). DevopsML: Towards modelling devops processes and platforms. In Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings (pp. 1-10).
3. Pendyala, V. (2020). Evolution of integration, build, test, and release engineering into DevOps and to DevSecOps. In Tools and techniques for software development in large organizations: emerging research and opportunities (pp. 1-20). IGI Global Scientific Publishing.
4. How Backstage Made Our Developers More Effective And How It Can Help Yours, Too, Spotify Engineering, 2021. online. https://engineering.atspotify.com/2021/09/how-backstage-made-our-developers-more-effective-and-how-it-can-help-yours-too?utm_source=chatgpt.com
5. Ozawa, T. (1996). The macro-IDP, meso-IDPs and the technology development path (TDP). Foreign Direct Investment and Governments, Routledge, 142-173.
6. Internal Developer Platforms: From idea to reality Johnny Dallas, Blog on platformengineering.org, published September 21, 2023
7. Van de Kamp, R., Bakker, K., & Zhao, Z. (2023, October). Paving the path towards platform engineering using a comprehensive reference model. In International Conference on Enterprise Design, Operations, and Computing (pp. 177-193). Cham: Springer Nature Switzerland.
8. Fontão, A., Cleger‐Tamayo, S., Wiese, I., Pereira dos Santos, R., & Claudio Dias‐Neto, A. (2023). A Developer Relations (DevRel) model to govern developers in Software Ecosystems. Journal of Software: Evolution and Process, 35(5), e2389.
9. Srivastava, R. (2021). Cloud Native Microservices with Spring and Kubernetes: Design and Build Modern Cloud Native Applications using Spring and Kubernetes (English Edition). BPB Publications.
10. Dab, B., Fajjari, I., Rohon, M., Auboin, C., & Diquélou, A. (2020, June). Cloud-native service function chaining for 5G based on network service mesh. In ICC 2020-2020 IEEE International Conference On Communications (ICC) (pp. 1-7). IEEE.
11. Niedermaier, S., Koetter, F., Freymann, A., & Wagner, S. (2019, October). On observability and monitoring of distributed systems–an industry interview study. In International Conference on Service-Oriented Computing (pp. 36-52). Cham: Springer International Publishing.
12. Dasseville, I., & Janssens, G. (2015). A web-based IDE for IDP. arXiv preprint arXiv:1511.00920.
13. Mulder, J., & Mulder, J. (2023). Multi-Cloud Administration Guide. BPB Publications.
14. Noda, A., Storey, M. A., Forsgren, N., & Greiler, M. (2023). DevEx: What Drives Productivity: The developer-centric approach to measuring and improving productivity. Queue, 21(2), 35-53.
15. Khan, M. S., Khan, A. W., Khan, F., Khan, M. A., & Whangbo, T. K. (2022). Critical challenges to adopt DevOps culture in software organizations: A systematic review. Ieee Access, 10, 14339-14349.
16. Diamantopoulos, N., Wong, J., Mattos, D. I., Gerostathopoulos, I., Wardrop, M., & McFarland, C. et al. (2019). Engineering for a Science Centric Experimentation Platform. arXiv preprint.
17. Calabrese, G. (1997). Communication and co‐operation in product development: a case study of a European car producer. R&D Management, 27(3), 239-252.
18. Allam, K. (2022). Platform as a Product: The Rise of Internal Developer Platforms (IDPs). International Journal of Science and Engineering, 7(4), 265. https://doi.org/10.53555/ephijse.v7i4.265
19. JAHIĆ, A., & BUZAĐIJA, N. (2023). DevOps Methodology in Modern Software Development. Quantum Journal of Engineering, Science and Technology, 4(1), 1-11.
20. Muffatto, M., & Roveda, M. (2000). Developing product platforms: analysis of the development process. Technovation, 20(11), 617-630.
21. Pappula, K. K., & Anasuri, S. (2020). A Domain-Specific Language for Automating Feature-Based Part Creation in Parametric CAD. International Journal of Emerging Research in Engineering and Technology, 1(3), 35-44. https://doi.org/10.63282/3050-922X.IJERET-V1I3P105
22. Rahul, N. (2020). Optimizing Claims Reserves and Payments with AI: Predictive Models for Financial Accuracy. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 46-55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106
23. Enjam, G. R. (2020). Ransomware Resilience and Recovery Planning for Insurance Infrastructure. International Journal of AI, BigData, Computational and Management Studies, 1(4), 29-37. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104
24. Pappula, K. K., Anasuri, S., & Rusum, G. P. (2021). Building Observability into Full-Stack Systems: Metrics That Matter. International Journal of Emerging Research in Engineering and Technology, 2(4), 48-58. https://doi.org/10.63282/3050-922X.IJERET-V2I4P106
25. Pedda Muntala, P. S. R., & Karri, N. (2021). Leveraging Oracle Fusion ERP’s Embedded AI for Predictive Financial Forecasting. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(3), 74-82. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I3P108
26. Rahul, N. (2021). Strengthening Fraud Prevention with AI in P&C Insurance: Enhancing Cyber Resilience. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 43-53. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P106
27. Enjam, G. R. (2021). Data Privacy & Encryption Practices in Cloud-Based Guidewire Deployments. International Journal of AI, BigData, Computational and Management Studies, 2(3), 64-73. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I3P108
28. Pappula, K. K. (2022). Architectural Evolution: Transitioning from Monoliths to Service-Oriented Systems. International Journal of Emerging Research in Engineering and Technology, 3(4), 53-62. https://doi.org/10.63282/3050-922X.IJERET-V3I4P107
29. Jangam, S. K. (2022). Self-Healing Autonomous Software Code Development. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 42-52. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P105
30. Anasuri, S. (2022). Adversarial Attacks and Defenses in Deep Neural Networks. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 77-85. https://doi.org/10.63282/xs971f03
31. Pedda Muntala, P. S. R. (2022). Anomaly Detection in Expense Management using Oracle AI Services. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 87-94. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P109
32. Rahul, N. (2022). Automating Claims, Policy, and Billing with AI in Guidewire: Streamlining Insurance Operations. International Journal of Emerging Research in Engineering and Technology, 3(4), 75-83. https://doi.org/10.63282/3050-922X.IJERET-V3I4P109
33. Enjam, G. R. (2022). Energy-Efficient Load Balancing in Distributed Insurance Systems Using AI-Optimized Switching Techniques. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 68-76. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P108
34. Pappula, K. K. (2023). Reinforcement Learning for Intelligent Batching in Production Pipelines. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 76-86. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P109
35. Jangam, S. K., & Pedda Muntala, P. S. R. (2023). Challenges and Solutions for Managing Errors in Distributed Batch Processing Systems and Data Pipelines. International Journal of Emerging Research in Engineering and Technology, 4(4), 65-79. https://doi.org/10.63282/3050-922X.IJERET-V4I4P107
36. Anasuri, S. (2023). Secure Software Supply Chains in Open-Source Ecosystems. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 62-74. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P108
37. Pedda Muntala, P. S. R., & Karri, N. (2023). Leveraging Oracle Digital Assistant (ODA) to Automate ERP Transactions and Improve User Productivity. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 97-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P111
38. Rahul, N. (2023). Transforming Underwriting with AI: Evolving Risk Assessment and Policy Pricing in P&C Insurance. International Journal of AI, BigData, Computational and Management Studies, 4(3), 92-101. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P110
39. Enjam, G. R. (2023). Modernizing Legacy Insurance Systems with Microservices on Guidewire Cloud Platform. International Journal of Emerging Research in Engineering and Technology, 4(4), 90-100. https://doi.org/10.63282/3050-922X.IJERET-V4I4P109
40. Pappula, K. K. (2020). Browser-Based Parametric Modeling: Bridging Web Technologies with CAD Kernels. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 56-67. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P107
41. Rahul, N. (2020). Vehicle and Property Loss Assessment with AI: Automating Damage Estimations in Claims. International Journal of Emerging Research in Engineering and Technology, 1(4), 38-46. https://doi.org/10.63282/3050-922X.IJERET-V1I4P105
42. Enjam, G. R., & Chandragowda, S. C. (2020). Role-Based Access and Encryption in Multi-Tenant Insurance Architectures. International Journal of Emerging Trends in Computer Science and Information Technology, 1(4), 58-66. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I4P107
43. Pappula, K. K. (2021). Modern CI/CD in Full-Stack Environments: Lessons from Source Control Migrations. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(4), 51-59. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I4P106
44. Pedda Muntala, P. S. R. (2021). Prescriptive AI in Procurement: Using Oracle AI to Recommend Optimal Supplier Decisions. International Journal of AI, BigData, Computational and Management Studies, 2(1), 76-87. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I1P108
45. Rahul, N. (2021). AI-Enhanced API Integrations: Advancing Guidewire Ecosystems with Real-Time Data. International Journal of Emerging Research in Engineering and Technology, 2(1), 57-66. https://doi.org/10.63282/3050-922X.IJERET-V2I1P107
46. Enjam, G. R., Chandragowda, S. C., & Tekale, K. M. (2021). Loss Ratio Optimization using Data-Driven Portfolio Segmentation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 54-62. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P107
47. Pappula, K. K. (2022). Modular Monoliths in Practice: A Middle Ground for Growing Product Teams. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 53-63. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P106
48. Jangam, S. K., & Pedda Muntala, P. S. R. (2022). Role of Artificial Intelligence and Machine Learning in IoT Device Security. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 77-86. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P108
49. Anasuri, S. (2022). Next-Gen DNS and Security Challenges in IoT Ecosystems. International Journal of Emerging Research in Engineering and Technology, 3(2), 89-98. https://doi.org/10.63282/3050-922X.IJERET-V3I2P110
50. Pedda Muntala, P. S. R. (2022). Detecting and Preventing Fraud in Oracle Cloud ERP Financials with Machine Learning. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 57-67. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P107
51. Rahul, N. (2022). Enhancing Claims Processing with AI: Boosting Operational Efficiency in P&C Insurance. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 77-86. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P108
52. Enjam, G. R., & Tekale, K. M. (2022). Predictive Analytics for Claims Lifecycle Optimization in Cloud-Native Platforms. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 95-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P110
53. Pappula, K. K., & Rusum, G. P. (2023). Multi-Modal AI for Structured Data Extraction from Documents. International Journal of Emerging Research in Engineering and Technology, 4(3), 75-86. https://doi.org/10.63282/3050-922X.IJERET-V4I3P109
54. Jangam, S. K., Karri, N., & Pedda Muntala, P. S. R. (2023). Develop and Adapt a Salesforce User Experience Design Strategy that Aligns with Business Objectives. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 53-61. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P107
55. Anasuri, S. (2023). Confidential Computing Using Trusted Execution Environments. International Journal of AI, BigData, Computational and Management Studies, 4(2), 97-110. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I2P111
56. Pedda Muntala, P. S. R., & Jangam, S. K. (2023). Context-Aware AI Assistants in Oracle Fusion ERP for Real-Time Decision Support. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 75-84. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P109
57. Rahul, N. (2023). Personalizing Policies with AI: Improving Customer Experience and Risk Assessment. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 85-94. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P110
58. Enjam, G. R. (2023). AI Governance in Regulated Cloud-Native Insurance Platforms. International Journal of AI, BigData, Computational and Management Studies, 4(3), 102-111. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P111
59. Pappula, K. K., & Rusum, G. P. (2021). Designing Developer-Centric Internal APIs for Rapid Full-Stack Development. International Journal of AI, BigData, Computational and Management Studies, 2(4), 80-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I4P108
60. Pedda Muntala, P. S. R. (2021). Integrating AI with Oracle Fusion ERP for Autonomous Financial Close. International Journal of AI, BigData, Computational and Management Studies, 2(2), 76-86. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I2P109
61. Jangam, S. K. (2022). Role of AI and ML in Enhancing Self-Healing Capabilities, Including Predictive Analysis and Automated Recovery. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 47-56. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P106
62. Anasuri, S., Rusum, G. P., & Pappula, kiran K. (2022). Blockchain-Based Identity Management in Decentralized Applications. International Journal of AI, BigData, Computational and Management Studies, 3(3), 70-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I3P109
63. Pedda Muntala, P. S. R. (2022). Enhancing Financial Close with ML: Oracle Fusion Cloud Financials Case Study. International Journal of AI, BigData, Computational and Management Studies, 3(3), 62-69. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I3P108
64. Jangam, S. K., & Karri, N. (2023). Robust Error Handling, Logging, and Monitoring Mechanisms to Effectively Detect and Troubleshoot Integration Issues in MuleSoft and Salesforce Integrations. International Journal of Emerging Research in Engineering and Technology, 4(4), 80-89. https://doi.org/10.63282/3050-922X.IJERET-V4I4P108
65. Anasuri, S. (2023). Synthetic Identity Detection Using Graph Neural Networks. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 87-96. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P110
66. Reddy Pedda Muntala, P. S., & Karri, N. (2023). Voice-Enabled ERP: Integrating Oracle Digital Assistant with Fusion ERP for Hands-Free Operations. International Journal of Emerging Trends in Computer Science and Information Technology, 4(2), 111-120. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I2P111
67. Enjam, G. R., Tekale, K. M., & Chandragowda, S. C. (2023). Zero-Downtime CI/CD Production Deployments for Insurance SaaS Using Blue/Green Deployments. International Journal of Emerging Research in Engineering and Technology, 4(3), 98-106. https://doi.org/10.63282/3050-922X.IJERET-V4I3P111