Empowering Cloud Security with Artificial Intelligence: Detecting Threats Using Advanced Machine learning Technologies
DOI:
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P106Keywords:
Cloud Security, DDoS Detection, Random Forest, Machine Learning, CICDDoS2019 Dataset, Threat Detection, CybersecurityAbstract
The high growth rate of cloud computing where protection of digital assets due to the nature of the threat is of paramount importance especially in reducing cyber threats such as Distributed Denial-of-Service (DDoS) attacks. In the paper, I have suggested an intelligent framework of threat detection based on the Random Forest (RF) model to improve cloud security. This model was trained and also tested on the CIC-DDoS2019 dataset, with the capabilities of ensemble learning used to attain high levels of classification. In the experiment, the RF model attained an 99.97% accuracy with precision, recall of 99.97%, and an F1-score of 99.98 %. The better performance of the proposed approach is proven by making a comparative analysis with other models, Gradient Boosting (96.7%), Logistic Regression (95.0%), Support Vector Machine (94.32%). The model robustness is also confirmed by ROC curves, confusion matrix analysis and training-validation trends. Such results define Random Forest as an exceptionally efficient and predictable framework when it comes to countering changing cyber risks in cloud environments, with promise of both scalability and real-time effectiveness when implemented into practice
References
1. A. Qayyum et al., “Securing Machine Learning in the Cloud: A Systematic Review of Cloud Machine Learning Security,” Front. Big Data, vol. 3, Nov. 2020, doi: 10.3389/fdata 2020.587139.
2. M. Abubakar, S. C. G. Varma, H. Likki, H. Gp, H. S, and H. M. S, “Leveraging AI and Machine Learning for Enhanced Cloud Security and Performance,” 2020.
3. Bindra and M. Sood, “Detecting DDoS attacks using machine learning techniques and contemporary intrusion detection dataset,” Autom. Control Comput. Sci., vol. 53, no. 5, pp. 419–428, 2019.
4. D. Bhamare, T. Salman, M. Samaka, A. Erbad, and R. Jain, “Feasibility of supervised machine learning for cloud security,” in 2016 International Conference on Information Science and Security (ICISS), 2016, pp. 1–5.
5. S. I. Shyla and S. S. Sujatha, “Cloud security: LKM and optimal fuzzy system for intrusion detection in cloud environment,” J. Intell. Syst., vol. 29, no. 1, pp. 1626–1642, 2019.
6. S. Singamsetty, “Fuzzy-Optimized Lightweight Cyber-Attack Detection For Secure Edge-Based Iot Networks,” vol. 6, no. 07, pp. 1028–1033, 2019, doi: 10.53555/jcr.v6.
7. A. Das, W.-M. Lin, and P. Rad, “A distributed secure machine-learning cloud architecture for semantic analysis,” in Applied Cloud Deep Semantic Recognition, Auerbach Publications, 2018, pp. 131–159.
8. J. Hou, J. Qian, Y. Wang, X.-Y. Li, H. Du, and L. Chen, “ML Defense: Against Prediction API Threats in Cloud-Based Machine Learning Service,” in Proceedings of the International Symposium on Quality of Service, New York, NY, USA: ACM, Jun. 2019, pp. 1–10. doi: 10.1145/3326285.3329042.
9. S. Oduri, “Integrating Ai Into Cloud Security : Future Trends And Technologies,” 2019.
10. R. S. S. Kumar, A. Wicker, and M. Swann, “Practical machine learning for cloud intrusion detection: Challenges and the way forward,” in Proceedings of the 10th ACM workshop on artificial intelligence and security, 2017, pp. 81–90.
11. M. P. Bharati and S. Tamane, “NIDS-Network Intrusion Detection System Based on Deep and Machine Learning Frameworks with CICIDS2018 using Cloud Computing,” in 2020 International Conference on Smart Innovations in Design, Environment, Management, Planning and Computing (ICSIDEMPC), 2020, pp. 27–30. doi: 10.1109/ICSIDEMPC49020.2020.9299584.
12. D. Tripathy, R. Gohil, and T. Halabi, “Detecting SQL Injection Attacks in Cloud SaaS using Machine Learning,” in 2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), 2020, pp. 145–150. doi: 10.1109/BigDataSecurity-HPSC-IDS49724.2020.00035.
13. A. Abusitta, M. Bellaiche, M. Dagenais, and T. Halabi, “A deep learning approach for proactive multi-cloud cooperative intrusion detection system,” Futur. Gener. Comput. Syst., vol. 98, pp. 308–318, Sep. 2019, doi: 10.1016/j.future.2019.03.043.
14. S. Garg, K. Kaur, N. Kumar, G. Kaddoum, A. Y. Zomaya, and R. Ranjan, “A Hybrid Deep Learning-Based Model for Anomaly Detection in Cloud Datacenter Networks,” IEEE Trans. Netw. Serv. Manag., vol. 16, no. 3, pp. 924–935, 2019, doi: 10.1109/TNSM.2019.2927886.
15. S. Parampottupadam and A.-N. Moldovann, “Cloud-based Real-time Network Intrusion Detection Using Deep Learning,” in 2018 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), 2018, pp. 1–8. doi: 10.1109/CyberSecPODS.2018.8560674.
16. Y. Gao, Y. Liu, Y. Jin, J. Chen, and H. Wu, “A novel semi-supervised learning approach for network intrusion detection on cloud-based robotic system,” IEEE Access, vol. 6, pp. 50927–50938, 2018.
17. A. Hameed and M. Suleman, “AI-Powered Anomaly Detection for Cloud Security: Leveraging Machine Learning and DSPM,” 2019, doi: 10.13140/RG.2.2.23781.51685.
18. A. Majeed and N. Ahmad, “DSPM in Cloud Security: AI-Driven Anomaly Detection Using Machine Learning Models,” 2019.
19. Z. Hu, L. Wang, L. Qi, Y. Li, and W. Yang, “A novel wireless network intrusion detection method based on adaptive synthetic sampling and an improved convolutional neural network,” IEEE access, vol. 8, pp. 195741–195751, 2020.
20. M. Idhammad, K. Afdel, and M. Belouch, “Detection System of HTTP DDoS Attacks in a Cloud Environment Based on Information Theoretic Entropy and Random Forest,” Secur. Commun. Networks, vol. 2018, no. 1, pp. 1–13, Jun. 2018, doi: 10.1155/2018/1263123.
21. A. Tesfahun and D. Lalitha Bhaskari, “Intrusion detection using random forests classifier with SMOTE and feature reduction,” Proc. - 2013 Int. Conf. Cloud Ubiquitous Comput. Emerg. Technol. CUBE 2013, pp. 127–132, 2013, doi: 10.1109/CUBE.2013.31.
22. K. Kaur and V. Zandu, “A Secure Data Classification Model in Cloud Computing Using Machine Learning Approach,” Int. J. Grid Distrib. Comput., vol. 9, no. 8, pp. 13–22, Aug. 2016, doi: 10.14257/ijgdc.2016.9.8.02.
23. P. M. Khilar, V. Chaudhari, and R. R. Swain, “Trust-based access control in cloud computing using machine learning,” in Cloud Computing for Geospatial Big Data Analytics: Intelligent Edge, Fog and Mist Computing, Springer, 2018, pp. 55–79.
24. I. Bolodurina, A. Shukhman, D. Parfenov, A. Zhigalov, and L. Zabrodina, “Investigation of the problem of classifying unbalanced datasets in identifying distributed denial of service attacks,” J. Phys. Conf. Ser., vol. 1679, no. 4, 2020, doi: 10.1088/1742-6596/1679/4/042020.
25. M. S. Elsayed, N.-A. Le-Khac, S. Dev, and A. D. Jurcut, “DDoSNet: A Deep-Learning Model for Detecting Network Attacks,” in 2020 IEEE 21st International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), 2020, pp. 391–396. doi: 10.1109/WoWMoM49955.2020.00072.
26. P. G. O. Prakash, K. Sasirekha, and D. Vistro, “A DDOS prevention system designed using machine learning for cloud computing Environment,” Int. J. Manag., vol. 11, no. 10, pp. 1797–1806, 2020, doi: 10.34218/IJM.11.10.2020.167.
27. Polu, A. R., Vattikonda, N., Buddula, D. V. K. R., Narra, B., Patchipulusu, H., & Gupta, A. (2021). Integrating AI-Based Sentiment Analysis with Social Media Data for Enhanced Marketing Insights. Available at SSRN 5266555.
28. Katari, A., & Kalla, D. (2021). Cost Optimization in Cloud-Based Financial Data Lakes: Techniques and Case Studies. ESP Journal of Engineering & Technology Advancements (ESP-JETA), 1(1), 150-157.
29. Polu, A. R., Vattikonda, N., Gupta, A., Patchipulusu, H., Buddula, D. V. K. R., & Narra, B. (2021). Enhancing Marketing Analytics in Online Retailing through Machine Learning Classification Techniques. Available at SSRN 5297803.
30. Polu, A. R., Buddula, D. V. K. R., Narra, B., Gupta, A., Vattikonda, N., & Patchipulusu, H. (2021). Evolution of AI in Software Development and Cybersecurity: Unifying Automation, Innovation, and Protection in the Digital Age. Available at SSRN 5266517.
31. Gupta, K., Varun, G. A. D., Polu, S. D. E., & Sachs, G. Enhancing Marketing Analytics in Online Retailing through Machine Learning Classification Techniques.
32. Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., Polam, R. M., & Kamarthapu, B. (2021). Big Data and Predictive Analytics for Customer Retention: Exploring the Role of Machine Learning in E-Commerce. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 26-34.
33. Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Vangala, S. R. (2021). Data Security in Cloud Computing: Encryption, Zero Trust, and Homomorphic Encryption. International Journal of Emerging Trends in Computer Science and Information Technology, 2(3), 70-80.
34. Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Vangala, S. R. (2021). Big Text Data Analysis for Sentiment Classification in Product Reviews Using Advanced Large Language Models. International Journal of AI, BigData, Computational and Management Studies, 2(2), 55-65.
35. Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., & Polam, R. M. (2021). Advanced Machine Learning Models for Detecting and Classifying Financial Fraud in Big Data-Driven. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(3), 39-46.
36. Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., & Chundru, S. K. (2021). Smart Healthcare: Machine Learning-Based Classification of Epileptic Seizure Disease Using EEG Signal Analysis. International Journal of Emerging Research in Engineering and Technology, 2(3), 61-70.
37. Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., Chalasani, R., & Tyagadurgam, M. S. V. (2021). Strengthening Cybersecurity Governance: The Impact of Firewalls on Risk Management. International Journal of AI, BigData, Computational and Management Studies, 2(4), 60-68.
38. Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., & Gangineni, V. N. (2021). An Advanced Machine Learning Models Design for Fraud Identification in Healthcare Insurance. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 26-34.
39. Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., & Chalasani, R. (2021). Enhancing IoT (Internet of Things) Security through Intelligent Intrusion Detection Using ML Models. International Journal of Emerging Research in Engineering and Technology, 2(1), 27-36.
40. Penmetsa, M., Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., & Pabbineedi, S. (2021). Next-Generation Cybersecurity: The Role of AI and Quantum Computing in Threat Detection. International Journal of Emerging Trends in Computer Science and Information Technology, 2(4), 54-61.