Detecting Network Intrusions Using Big Data-Driven Artificial Intelligence Techniques in Cybersecurity
DOI:
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P106Keywords:
Cybersecurity, NSL-KDD dataset, Network intrusion, machine learning, CNN ModelAbstract
Cyberattacks are becoming more sophisticated, so protecting contemporary networks requires intrusion detection systems (IDS) that are both effective and intelligent. This study proposes a Convolutional Neural Network (CNN)-based model for detecting intrusions using the NSL-KDD dataset, leveraging deep learning's ability to automatically extract hierarchical features from complex network traffic patterns. The model underwent rigorous evaluation through performance metrics including precision, accuracy, recall, and F1-score. According to the results, the suggested CNN has an astonishingly high rate of accuracy of 99.9%, the model far surpasses conventional machine learning methods like Naïve Bayes and Artificial Neural Networks (ANN), and Multi-Layer Perceptron (MLP). These findings validate the strength of CNN in capturing intricate behaviors in network data, making it an attractive option for immediate and large-scale cybersecurity applications. Furthermore, the model demonstrates strong generalization, low error rates, and minimal overfitting, proving its robustness in handling diverse intrusion types. For use in future research that aims to increase detection accuracy and flexibility, they will be using hybrid models and updating Their datasets
References
1. W. Li and H. Song, “ART: An Attack-Resistant Trust Management Scheme for Securing Vehicular Ad Hoc Networks,” IEEE Trans. Intell. Transp. Syst., 2016, doi: 10.1109/TITS.2015.2494017.
2. H. Holm, “Signature based intrusion detection for zero-day attacks: (Not) A closed chapter?,” in Proceedings of the Annual Hawaii International Conference on System Sciences, 2014. doi: 10.1109/HICSS.2014.600.
3. Q. P. Nguyen, K. W. Lim, D. M. Divakaran, K. H. Low, and M. C. Chan, “GEE: A Gradient-based Explainable Variational Autoencoder for Network Anomaly Detection,” in 2019 IEEE Conference on Communications and Network Security, CNS 2019, 2019. doi: 10.1109/CNS.2019.8802833.
4. S. Garg, “Predictive Analytics and Auto Remediation using Artificial Inteligence and Machine learning in Cloud Computing Operations,” Int. J. Innov. Res. Eng. Multidiscip. Phys. Sci., vol. 7, no. 2, 2019.
5. F. Noorbehbahani, A. Fanian, R. Mousavi, and H. Hasannejad, “An incremental intrusion detection system using a new semi‐supervised stream classification method,” Int. J. Commun. Syst., vol. 30, no. 4, Mar. 2017, doi: 10.1002/dac.3002.
6. V. Kolluri, “A Pioneering Approach To Forensic Insights: Utilization Ai for Cybersecurity Incident Investigations,” Int. J. Res. Anal. Rev. (IJRAR, vol. 3, no. 3, 2016.
7. V. Kolluri, “An In-Depth Exploration of Unveiling Vulnerabilities: Exploring Risks in AI Models and Algorithms,” Int. J. Res. Anal. Rev., vol. 1, no. 3, pp. 910–913, 2014.
8. R. Abdulhammed, M. Faezipour, A. Abuzneid, and A. AbuMallouh, “Deep and Machine Learning Approaches for Anomaly-Based Intrusion Detection of Imbalanced Network Traffic,” IEEE Sensors Lett., vol. 3, no. 1, pp. 1–4, Jan. 2019, doi: 10.1109/LSENS.2018.2879990.
9. A. A. Kurniawan, H. A. Santoso, M. A. Soeleman, and A. Z. Fanani, “Intrusion Detection System as Audit in IoT Infrastructure using Ensemble Learning and SMOTE Method,” in Proceeding - 2019 5th International Conference on Science in Information Technology: Embracing Industry 4.0: Towards Innovation in Cyber Physical System, ICSITech 2019, 2019. doi: 10.1109/ICSITech46713.2019.8987524.
10. S. Rezvy, Y. Luo, M. Petridis, A. Lasebae, and T. Zebin, “An efficient deep learning model for intrusion classification and prediction in 5G and IoT networks,” in 2019 53rd Annual Conference on Information Sciences and Systems, CISS 2019, 2019. doi: 10.1109/CISS.2019.8693059.
11. L. Heng and T. Weise, “Intrusion Detection System Using Convolutional Neuronal Networks: A Cognitive Computing Approach for Anomaly Detection based on Deep Learning,” in Proceedings of 2019 IEEE 18th International Conference on Cognitive Informatics and Cognitive Computing, ICCI*CC 2019, 2019. doi: 10.1109/ICCICC46617.2019.9146088.
12. K. V Pradeepthi and A. Kannan, “Detection of Botnet traffic by using Neuro-fuzzy based Intrusion Detection,” 2018 Tenth Int. Conf. Adv. Comput., pp. 118–123, Dec. 2018, doi: 10.1109/ICoAC44903.2018.8939109.
13. R. Abdulhammed, M. Faezipour, A. Abuzneid, and A. Alessa, “Enhancing Wireless Intrusion Detection Using Machine Learning Classification with Reduced Attribute Sets,” in 2018 14th International Wireless Communications and Mobile Computing Conference, IWCMC 2018, 2018. doi: 10.1109/IWCMC.2018.8450479.
14. S. Kumar, A. Viinikainen, and T. Hamalainen, “Machine learning classification model for Network based Intrusion Detection System,” in 2016 11th International Conference for Internet Technology and Secured Transactions (ICITST), 2016, pp. 242–249. doi: 10.1109/ICITST.2016.7856705.
15. B. Ingre, A. Yadav, and A. K. Soni, “Decision Tree Based Intrusion Detection System for NSL-KDD Dataset,” in Smart Innovation, Systems and Technologies, vol. 84, no. March, 2018. doi: 10.1007/978-3-319-63645-0_23.
16. B. Ingre and A. Yadav, “Performance analysis of NSL-KDD dataset using ANN,” Int. Conf. Signal Process. Commun. Eng. Syst. - Proc. SPACES 2015, Assoc. with IEEE, no. July, pp. 92–96, 2015, doi: 10.1109/SPACES.2015.7058223.
17. C. Ieracitano et al., Statistical Analysis Driven Optimized Deep Learning System for Intrusion Detection, vol. 10989 LNAI. Springer International Publishing, 2018. doi: 10.1007/978-3-030-00563-4_74.
18. Polu, A. R., Buddula, D. V. K. R., Narra, B., Gupta, A., Vattikonda, N., & Patchipulusu, H. (2021). Evolution of AI in Software Development and Cybersecurity: Unifying Automation, Innovation, and Protection in the Digital Age. Available at SSRN 5266517.
19. Chinta, P. C. R., Katnapally, N., Ja, K., Bodepudi, V., Babu, S., & Boppana, M. S. (2022). Exploring the role of neural networks in big data-driven ERP systems for proactive cybersecurity management. Kurdish Studies.
20. Routhu, K., Bodepudi, V., Jha, K. M., & Chinta, P. C. R. (2020). A Deep Learning Architectures for Enhancing Cyber Security Protocols in Big Data Integrated ERP Systems. Available at SSRN 5102662.
21. Chinta, P. C. R., & Katnapally, N. (2021). Neural Network-Based Risk Assessment for Cybersecurity in Big Data-Oriented ERP Infrastructures. Neural Network-Based Risk Assessment for Cybersecurity in Big Data-Oriented ERP Infrastructures.
22. Katnapally, N., Chinta, P. C. R., Routhu, K. K., Velaga, V., Bodepudi, V., & Karaka, L. M. (2021). Leveraging Big Data Analytics and Machine Learning Techniques for Sentiment Analysis of Amazon Product Reviews in Business Insights. American Journal of Computing and Engineering, 4(2), 35-51.
23. Kalla, D. (2022). AI-Powered Driver Behavior Analysis and Accident Prevention Systems for Advanced Driver Assistance. International Journal of Scientific Research and Modern Technology (IJSRMT) Volume, 1.
24. Chinta, P. C. R. (2022). Enhancing Supply Chain Efficiency and Performance Through ERP Optimisation Strategies. Journal of Artificial Intelligence & Cloud Computing, 1(4), 10-47363.
25. Kuraku, D. S., Kalla, D., & Samaah, F. (2022). Navigating the link between internet user attitudes and cybersecurity awareness in the era of phishing challenges. International Advanced Research Journal in Science, Engineering and Technology, 9(12).
26. Sadaram, G., Sakuru, M., Karaka, L. M., Reddy, M. S., Bodepudi, V., Boppana, S. B., & Maka, S. R. (2022). Internet of Things (IoT) Cybersecurity Enhancement through Artificial Intelligence: A Study on Intrusion Detection Systems. Universal Library of Engineering Technology, (2022).
27. Karaka, L. M. (2021). Optimising Product Enhancements Strategic Approaches to Managing Complexity. Available at SSRN 5147875.
28. Polu, A. R., Vattikonda, N., Buddula, D. V. K. R., Narra, B., Patchipulusu, H., & Gupta, A. (2021). Integrating AI-Based Sentiment Analysis With Social Media Data For Enhanced Marketing Insights. Available at SSRN 5266555.
29. Jha, K. M., Bodepudi, V., Boppana, S. B., Katnapally, N., Maka, S. R., & Sakuru, M. Deep Learning-Enabled Big Data Analytics for Cybersecurity Threat Detection in ERP Ecosystems.
30. Kalla, D., Smith, N., Samaah, F., & Polimetla, K. (2022). Enhancing Early Diagnosis: Machine Learning Applications in Diabetes Prediction. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-205. DOI: doi. org/10.47363/JAICC/2022 (1), 191, 2-7.
31. Kalla, D., Kuraku, D. S., & Samaah, F. (2021). Enhancing cyber security by predicting malwares using supervised machine learning models. International Journal of Computing and Artificial Intelligence, 2(2), 55-62.
32. Katari, A., & Kalla, D. (2021). Cost Optimization in Cloud-Based Financial Data Lakes: Techniques and Case Studies. ESP Journal of Engineering & Technology Advancements (ESP-JETA), 1(1), 150-157.
33. Kalla, D., Smith, N., Samaah, F., & Polimetla, K. (2021). Facial Emotion and Sentiment Detection Using Convolutional Neural Network. Indian Journal of Artificial Intelligence Research (INDJAIR), 1(1), 1-13.