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Abstract: In the rapidly evolving landscape of cybersecurity, traditional intrusion detection systems (IDS) often fall short in 

adapting to novel and sophisticated threats. This paper explores the application of reinforcement learning (RL) to develop 

adaptive intrusion detection systems (AIDS) that can dynamically learn and improve their detection capabilities. We present a 

comprehensive framework that integrates RL with IDS to create a system capable of continuous learning and adaptation. The 

proposed approach leverages the strengths of RL in handling complex and uncertain environments, enabling the IDS to evolve 

and enhance its performance over time. We evaluate the proposed system using a variety of datasets and metrics, 

demonstrating its effectiveness in detecting and responding to both known and unknown threats. The results indicate that the 

RL-based AIDS outperforms traditional IDS in terms of accuracy, adaptability, and response time. 
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1. Introduction 
 Cybersecurity is a critical concern in the digital age, as the increasing sophistication and frequency of cyber attacks pose 

significant threats to organizations and individuals alike. These threats can range from data breaches and ransomware attacks to 

phishing and denial-of-service (DoS) attacks, each with the potential to cause substantial financial losses, reputational damage, 

and even legal consequences. Traditional intrusion detection systems (IDS) have long been a cornerstone of cybersecurity 

strategies, relying on predefined rules and known attack signatures to detect and respond to potential threats. However, these 

systems are often limited in their ability to adapt to new and evolving attack patterns, which can emerge rapidly in the ever-

changing landscape of cyber threats. As a result, IDS based on fixed rules and signatures frequently generate high false positive 

rates, leading to unnecessary alerts and a strain on security teams who must sift through them to identify genuine threats. 

Additionally, the delayed responses of these systems can leave organizations vulnerable to attacks that are not recognized until 

it is too late, thereby compromising the security and integrity of their digital assets. To address these challenges, there is a 

growing need for more advanced and dynamic cybersecurity solutions that can learn from new attack vectors and respond in 

real-time. 

 

1.1. Model Architecture 

 Architecture of CodeGen-Transformer, a transformer-based model designed for automated code generation. The model is 

structured into four key components: Training Process, Encoder, Decoder, and Software Integration, each of which plays a 

crucial role in ensuring efficient and high-quality code generation. The image highlights the data flow and dependencies 

between these components, illustrating how different processes interact to produce meaningful code. 

 

 The Training Process section, shown in a soft red shade, consists of Pre-training, Fine-tuning, and Data Augmentation. 

Pre-training enables the model to learn general syntactic and semantic patterns from large code repositories. Fine-tuning refines 

these learned representations by training the model on task-specific datasets. Data augmentation introduces variations in 

training data, improving robustness and adaptability. The arrows in the diagram indicate that the output from this stage is fed 

into the encoder, ensuring the model learns both generalized and specialized code structures. 

 

 The Encoder, represented in light blue, is responsible for processing input sequences. It consists of Input Processing, Self-

Attention Mechanism, and Positional Encoding. These components work together to transform natural language descriptions 

and existing code snippets into meaningful vector representations. The Self-Attention Mechanism ensures that the model 

captures relationships between different tokens, while Positional Encoding helps retain order information, which is crucial in 

code generation tasks. 
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 Following the encoder, the Decoder, displayed in a light green shade, takes the encoded representations and generates 

structured, executable code. It comprises Multi-Head Attention, Context-Aware Attention, and Token Generation mechanisms. 

Multi-head attention improves context awareness by focusing on different parts of the input, while the context-aware attention 

mechanism ensures that the generated code is relevant to surrounding context. Finally, the token generation module produces 

well-formed code sequences in various programming languages. 

 

 The Software Integration component, highlighted in soft yellow, demonstrates the real-world applications of CodeGen-

Transformer. The model's outputs can be utilized for Code Generation, Code Review, and Code Refactoring. This integration 

streamlines software development workflows, enabling automation of repetitive tasks and improving overall productivity and 

code quality. By seamlessly interacting with the decoder, the model ensures that generated code aligns with best practices and 

project-specific requirements. 

Figure 1: Architecture of RL-Based Adaptive Intrusion Detection System 

 

2. Related Work 
2.1 Intrusion Detection Systems (IDS) 

 Intrusion Detection Systems (IDS) are critical components in network security, designed to monitor network traffic and 

system activities to detect potential security threats. IDS can identify unauthorized access, malicious activities, and policy 

violations by analyzing network packets and system logs. Traditionally, IDS can be broadly categorized into two types: 

signature-based and anomaly-based systems. 

 

 Signature-based IDS rely on predefined patterns or signatures of known threats to detect malicious activities. These 

systems compare incoming network traffic or system behavior against a database of known attack signatures. While signature-

based IDS are highly effective in identifying known threats with low false positive rates, they are limited in detecting new or 

zero-day attacks, as they can only recognize threats with predefined patterns. Consequently, they require frequent updates to 

maintain their effectiveness against emerging threats. 
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 On the other hand, anomaly-based IDS detect deviations from established normal behavior patterns. These systems first 

learn the baseline behavior of a network or system and then identify any deviations as potential threats. Anomaly-based IDS 

are more flexible in detecting unknown or novel attacks since they do not rely on predefined signatures. However, this 

flexibility comes at the cost of higher false positive rates, as benign activities that deviate from the established norm may be 

misclassified as malicious. Balancing detection accuracy and false positive rates remains a significant challenge for anomaly-

based IDS. 

 

2.2 Machine Learning in IDS 

 To overcome the limitations of traditional IDS, machine learning (ML) techniques have been increasingly applied to 

enhance their detection capabilities. ML algorithms, such as decision trees, support vector machines (SVM), neural networks, 

and ensemble methods, can learn from historical data to identify patterns, anomalies, and complex relationships in network 

traffic. By leveraging ML models, IDS can automatically adapt to evolving attack patterns, reducing the dependency on manual 

updates and enhancing the detection of new or zero-day attacks. 

 

 However, implementing ML in IDS is not without challenges. ML models require extensive labeled training data to 

achieve high detection accuracy, and the quality and diversity of training data directly influence the model's performance. 

Additionally, ML-based IDS may struggle to adapt to rapidly changing network environments or new attack vectors. This 

limitation is partly due to the static nature of traditional ML models, which are typically trained offline and deployed without 

continuous learning capabilities. Consequently, maintaining the relevance and accuracy of ML-based IDS in dynamic 

cybersecurity landscapes requires frequent retraining and updates. 

 

2.3 Reinforcement Learning (RL) 

 Reinforcement Learning (RL) is a type of machine learning where an agent learns to make sequential decisions by 

interacting with an environment. The agent receives feedback in the form of rewards or penalties based on its actions, guiding 

it to maximize cumulative rewards over time. Unlike supervised learning, which relies on labeled datasets, RL learns through 

exploration and exploitation, making it particularly effective in dynamic and uncertain environments. 

 

 RL has been successfully applied to a wide range of domains, including robotics, autonomous systems, game playing, and 

resource management. In cybersecurity, RL offers significant potential for enhancing IDS due to its adaptive learning 

capabilities. RL can enable IDS to learn from network interactions and adapt to emerging threats by continuously updating its 

decision-making policy. This adaptability is especially valuable in dynamic and evolving cybersecurity landscapes, where new 

attack vectors frequently emerge. 

 

2.4 RL in IDS 

 Several studies have explored the application of Reinforcement Learning (RL) to enhance the performance of IDS. For 

instance, [1] proposed a Q-learning-based approach for network intrusion detection, where the agent learns to classify network 

traffic as normal or malicious by interacting with the network environment and receiving feedback on its actions. This 

approach enables the IDS to dynamically learn and improve its classification accuracy over time. 

 

 Another study by [2] utilized Deep Reinforcement Learning (DRL) to develop an adaptive IDS capable of recognizing 

evolving attack patterns. By leveraging deep neural networks, DRL-based IDS can efficiently handle high-dimensional input 

data, such as network traffic features, and learn complex decision-making policies. These models demonstrate enhanced 

detection accuracy and adaptability compared to traditional ML-based IDS. 

 

 However, existing research on RL in IDS often focuses on specific aspects, such as classification accuracy or adaptability 

to attack patterns, without providing a comprehensive framework for integrating RL with IDS. Additionally, challenges such as 

the selection of appropriate reward functions, state representations, and action spaces remain open research questions. This 

paper aims to address these challenges by proposing an adaptive IDS framework based on RL, emphasizing dynamic learning, 

scalability, and real-time threat detection. 

 

3. Proposed Framework for RL-Based AIDS 
3.1 Overview 

 The proposed framework for Reinforcement Learning (RL)-based Adaptive Intrusion Detection Systems (AIDS) is 

designed to enhance the detection and mitigation of security threats in dynamic network environments. Traditional IDS often 
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struggle to adapt to evolving attack patterns and changing network behaviors. In contrast, the RL-based AIDS framework 

leverages the adaptive learning capabilities of RL to continuously improve its threat detection accuracy and responsiveness. 

 

 The framework consists of several key components: the Environment, Agent, State Space, Action Space, Reward 

Function, and Learning Algorithm. The Environment represents the network where the IDS operates, continuously generating 

data from which the agent learns. The Agent is the core of the RL-based IDS, responsible for interacting with the environment, 

making decisions, and learning from feedback. The State Space encompasses all possible states that reflect current network 

conditions, while the Action Space defines the set of actions the agent can take, such as classifying network traffic or 

requesting additional information. The Reward Function provides feedback based on the agent’s actions, guiding it towards 

optimal decision-making. Finally, the Learning Algorithm governs how the agent updates its policy to maximize cumulative 

rewards. This modular design enables the framework to be highly adaptable, scalable, and capable of real-time threat detection 

in dynamic cybersecurity landscapes. 

 

3.2 Environment 

 The Environment in this framework represents the network infrastructure where the RL-based IDS operates. It 

encompasses all network components, including routers, switches, servers, endpoints, and communication protocols. The 

environment is inherently dynamic, as network conditions can change due to various factors, such as fluctuations in traffic 

volume, the introduction of new devices, updates to system configurations, or emerging security threats. These dynamic 

changes present significant challenges for traditional IDS, which often rely on static rules or predefined signatures. 

 

 In the RL-based AIDS framework, the environment continuously provides observations to the agent, reflecting the current 

state of the network. These observations include real-time network traffic statistics, system logs, anomaly scores, and other 

relevant metrics. The agent uses these observations to determine the current state, make decisions, and take appropriate actions. 

By interacting with a dynamic environment, the RL-based IDS learns to recognize normal network behaviors and detect 

anomalies that may indicate potential security threats. This adaptive learning capability allows the system to respond to new 

and evolving attack vectors more effectively than traditional IDS. 

 

3.3 Agent 

 The Agent is the central component of the RL-based IDS, responsible for learning, decision-making, and interacting with 

the environment. It observes the current state of the network, selects actions based on its policy, and receives feedback in the 

form of rewards or penalties. The agent's primary objective is to learn an optimal policy that maximizes cumulative rewards 

over time, which translates to high accuracy and efficiency in threat detection and mitigation. 

 

 Unlike traditional IDS that rely on static rules or supervised learning models, the RL-based agent continuously learns from 

its interactions with the environment. It explores different actions and learns from the outcomes, enabling it to adapt to new 

attack patterns and network changes. This adaptability is particularly beneficial in cybersecurity, where new threats and attack 

techniques frequently emerge. The agent's learning process is governed by the RL algorithm, which updates the agent's policy 

based on the rewards received, ensuring continuous improvement in threat detection and response strategies. 

 

3.4 State Space 

 The State Space represents all possible states the agent can encounter in the network environment. Each state is a snapshot 

of the current network conditions, capturing relevant features that help the agent understand the context of its observations. 

Designing an effective state space is crucial for the RL-based IDS, as it directly influences the agent's ability to learn accurate 

and efficient decision-making policies. 

In this framework, the state space includes a wide range of features that provide a comprehensive view of network activities. 

These features can be categorized into three main groups: 

1. Network Traffic Statistics: These include metrics such as packet rates, flow durations, protocol distributions, and 

connection patterns. These statistics help the agent understand normal network behavior and identify deviations that 

may indicate malicious activities. 

2. System Logs: Logs related to user authentication, file access, and system events provide contextual information about 

system activities and potential security incidents. By analyzing system logs, the agent can detect unauthorized access 

attempts or suspicious actions. 

3. Anomaly Scores: These scores are calculated based on deviations from established normal behavior patterns. 

Anomaly detection algorithms can be used to generate these scores, which serve as additional inputs for the state 

space. 
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3.5 Action Space 

 The Action Space defines the set of actions the RL-based agent can take in response to observed states. In the context of 

IDS, the primary actions are focused on traffic classification and decision-making related to threat detection. The proposed 

framework includes the following actions: 

1. Classify Traffic as Normal: The agent determines that the observed traffic is benign and does not pose any security 

threat. This action minimizes unnecessary alerts and avoids false positives. 

2. Classify Traffic as Malicious: The agent identifies the observed traffic as potentially harmful or suspicious, triggering 

appropriate security measures such as alerts, blocking, or quarantine actions. 

3. Request Additional Information: In cases of uncertainty, the agent can request more data or contextual information to 

improve its decision-making accuracy. This action allows the agent to make more informed decisions while 

minimizing false positives and negatives. 

 

3.6 Reward Function 

 The Reward Function is a critical component that guides the agent's learning process by providing feedback based on its 

actions. It is designed to encourage accurate threat detection while penalizing incorrect classifications and inefficient responses. 

The reward function in this framework is defined as follows: 

1. Positive Reward: The agent receives a positive reward for correctly classifying network traffic, whether as normal 

(true negative) or malicious (true positive). This encourages the agent to maximize detection accuracy. 

2. Negative Reward: A negative reward is given for incorrect classifications, including false positives (benign traffic 

classified as malicious) and false negatives (malicious traffic classified as normal). This discourages misclassifications 

and reduces false alarm rates. 

3. Penalty for Delay: To encourage timely threat detection, the agent receives a penalty for delayed responses. This 

ensures that the IDS not only achieves high accuracy but also maintains real-time responsiveness. 

 

3.7 Learning Algorithm 

 The Learning Algorithm used in this framework is a variant of Q-learning, a model-free RL algorithm that learns a policy 

by updating a Q-table. The Q-table stores the expected cumulative rewards for each state-action pair, guiding the agent's 

decision-making. The Q-values are updated using the following equation: 

𝐐(𝐬, 𝐚) ← 𝐐(𝐬, 𝐚) + 𝛂[𝐫 + 𝛄𝐚′𝒎𝒂𝒙𝐐(𝐬′, 𝐚′) − 𝐐(𝐬, 𝐚)] 
 

3.8 Algorithm 

The following algorithm summarizes the proposed RL-based AIDS: 

Initialize Q-table with zeros 

Set learning rate α, discount factor γ, and exploration rate ε 

for episode in range(num_episodes): 

    Initialize state s 

    for step in range(max_steps): 

        if random.uniform(0, 1) < ε: 

            action a = random.choice(action_space) 

        else: 

            action a = argmax(Q(s, a)) 

        next_state s', reward r = environment.step(a) 

        Q(s, a) = Q(s, a) + α [r + γ max(Q(s', a')) - Q(s, a)] 

        s = s' 

        if s is terminal: 

            break 

    ε = ε * decay_rate 

 

4. Experimental Setup and Methodology 
4.1 Datasets 

 To evaluate the effectiveness of the proposed RL-based Adaptive Intrusion Detection System (AIDS), three widely 

recognized datasets are used: KDD Cup 1999, NSL-KDD, and CICIDS 2017. These datasets are chosen to ensure 

comprehensive evaluation across different network scenarios and attack types. 

• KDD Cup 1999: This dataset is one of the most widely used benchmarks for evaluating intrusion detection systems. It 

contains network traffic data labeled as either normal or malicious, with various attack types such as denial of service 

(DoS), probing, remote-to-local (R2L), and user-to-root (U2R). Despite its popularity, this dataset has been criticized 
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for its redundancy and imbalance issues, which can lead to biased evaluation results. However, it provides a historical 

baseline for comparing IDS models. 

• NSL-KDD: To address the limitations of KDD Cup 1999, the NSL-KDD dataset was introduced. It is a refined subset 

of KDD Cup 1999, designed to reduce redundancy and improve data quality. NSL-KDD maintains the diversity of 

attack types while ensuring a balanced distribution of normal and attack records. This makes it more suitable for 

evaluating the generalization performance of IDS models. 

• CICIDS 2017: The CICIDS 2017 dataset represents modern network traffic patterns and includes a variety of attack 

types, such as brute force, botnet, infiltration, and distributed denial of service (DDoS). It is generated using realistic 

network simulations and contains labeled traffic data with both normal and malicious activities. This dataset is 

particularly useful for evaluating IDS models in contemporary network environments with sophisticated attack 

vectors. 

 

4.2 Metrics 

 To assess the performance of the proposed RL-based AIDS, several evaluation metrics are employed to provide a 

comprehensive analysis of detection accuracy, efficiency, and effectiveness. The chosen metrics include Accuracy, Precision, 

Recall, F1 Score, and Response Time: 

• Accuracy: This metric measures the proportion of correctly classified instances (both normal and malicious) out of the 

total number of instances. It provides an overall measure of the system's classification performance. However, in the 

context of IDS, accuracy alone may not be sufficient, especially when dealing with imbalanced datasets, where the 

number of normal instances significantly outweighs malicious ones. 

• Precision: Precision calculates the proportion of true positive instances among all instances classified as positive. It 

indicates the system's ability to avoid false positives, which is crucial in IDS to minimize unnecessary alerts and 

reduce the workload on security analysts. 

• Recall: Also known as sensitivity or true positive rate, recall measures the proportion of true positive instances among 

all actual positive instances. It indicates the system's ability to detect malicious activities without missing threats, 

which is critical for maintaining network security. 

• F1 Score: The F1 Score is the harmonic mean of precision and recall, providing a balanced measure of the IDS’s 

performance. It is particularly useful when the class distribution is imbalanced, ensuring that neither precision nor 

recall is disproportionately emphasized. 

• Response Time: This metric measures the time taken by the RL-based AIDS to detect and respond to security threats. 

In real-world applications, rapid threat detection and response are crucial for minimizing the impact of attacks. 

 

4.3 Baseline Models 

 To benchmark the performance of the proposed RL-based AIDS, several baseline models are used for comparison. These 

include Signature-based IDS, Anomaly-based IDS, and Deep Learning-based IDS: 

• Signature-based IDS: This traditional approach relies on predefined rules or signatures to detect known threats. It 

compares incoming network traffic against a database of known attack patterns. Although effective at detecting 

known attacks with high precision, signature-based IDS struggles to detect novel or zero-day attacks, making it less 

adaptable in dynamic threat landscapes. 

• Anomaly-based IDS: This approach uses machine learning algorithms to detect deviations from normal network 

behavior. By modeling normal traffic patterns, anomaly-based IDS can identify previously unseen attack vectors. 

However, it is prone to high false positive rates, as legitimate but unusual activities can be misclassified as malicious. 

• Deep Learning-based IDS: This modern approach utilizes deep neural networks to classify network traffic as normal 

or malicious. It can learn complex patterns and representations from raw network data, improving detection accuracy. 

However, deep learning models require substantial training data and computational resources. Additionally, they may 

face challenges in generalizing to new attack types without retraining. 

 

4.4 Implementation 

 The implementation of the proposed RL-based AIDS is carried out using Python and the TensorFlow library, leveraging 

their powerful machine learning and deep learning capabilities. TensorFlow's flexible architecture allows for the efficient 

design and training of RL models, supporting various neural network architectures and optimization algorithms. The 

experiments are conducted on a high-performance machine with the following specifications: 

• Processor: Intel Core i7-9700K, a powerful CPU with high clock speeds and multiple cores, ensuring fast data 

processing and model training. 
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• RAM: 32 GB, providing sufficient memory for handling large datasets and complex model computations without 

bottlenecks. 

• GPU: NVIDIA GeForce RTX 2080 Ti, a high-performance graphics card with CUDA support, enabling accelerated 

training of deep reinforcement learning models. The GPU significantly reduces the time required for model training 

and inference, facilitating rapid experimentation and tuning. 

The implementation follows a modular design, allowing easy integration of different RL algorithms, reward functions, and 

network features. The RL agent interacts with the environment by processing network traffic data, making decisions based on 

its policy, and updating its Q-values using the Q-learning algorithm. The training process is iterative, with the agent 

continuously learning from its interactions and optimizing its policy to maximize cumulative rewards. Hyperparameters, such 

as the learning rate, discount factor, and exploration-exploitation trade-off, are fine-tuned using grid search and cross-

validation techniques to achieve optimal performance. Additionally, the implementation utilizes TensorFlow's GPU 

acceleration capabilities for faster training and evaluation. This efficient and flexible implementation approach ensures that the 

RL-based AIDS is both scalable and adaptable to various network environments and threat scenarios. 

 

5. Results 
5.1 Performance on KDD Cup 1999 

 The performance of the proposed RL-based AIDS on the KDD Cup 1999 dataset demonstrates its effectiveness in 

detecting a wide range of network attacks. As shown in Table 1, the RL-based AIDS achieves an accuracy of 95.2%, 

outperforming all baseline models. It also attains a Precision of 96.1%, indicating its capability to minimize false positives 

while accurately identifying malicious traffic. Additionally, the model achieves a Recall of 94.5%, reflecting its effectiveness 

in detecting true positives, even for rare or sophisticated attack types. The F1 Score of 95.3% illustrates a balanced 

performance between precision and recall, highlighting its robustness in maintaining high detection accuracy without 

sacrificing sensitivity. 

 

 Compared to traditional approaches, the Signature-based IDS shows lower accuracy at 88.7%, as it relies on predefined 

rules that may not capture new or evolving threats. The Anomaly-based IDS performs slightly better, achieving 92.3% 

accuracy by learning normal network patterns and identifying deviations. However, it suffers from a relatively high false 

positive rate, as indicated by its lower precision. The Deep Learning-based IDS performs better than the traditional models, 

with an accuracy of 94.1%, but is still outperformed by the RL-based AIDS due to its static learning approach, which lacks 

adaptability to dynamic network conditions. 

 

 The RL-based AIDS also demonstrates superior Response Time, with an average of 0.025 seconds, significantly faster 

than the baseline models. This rapid response is attributed to the RL agent’s ability to learn optimal policies for decision-

making, enabling it to detect and respond to threats in real time. These results showcase the proposed system’s potential as an 

efficient and accurate intrusion detection solution for legacy network environments. 

 

Table 1: Performance Comparison of IDS Models 

Model Accuracy Precision Recall F1 Score Response Time (s) 

RL-based 

AIDS 
95.2% 96.1% 94.5% 95.3% 0.025 

Signature-

based IDS 
88.7% 90.5% 87.1% 88.8% 0.050 

Anomaly-

based IDS 
92.3% 93.2% 91.5% 92.4% 0.045 

Deep 

Learning-

based IDS 

94.1% 95.0% 93.5% 94.3% 0.030 
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Figure 2: Performance Comparison of IDS Models Graph 

 

5.2 Performance on NSL-KDD 

 On the NSL-KDD dataset, the RL-based AIDS continues to exhibit high performance, achieving an accuracy of 96.5%, 

which is the highest among all evaluated models. Its Precision of 97.2% reflects its ability to accurately classify malicious 

activities with minimal false positives, enhancing its reliability in real-world deployment. The model also achieves a Recall of 

96.0%, ensuring that most attacks are correctly detected without being overlooked. The F1 Score of 96.6% demonstrates a 

well-balanced trade-off between precision and recall, confirming the model's robustness and effectiveness in maintaining high 

detection accuracy. 

 

 The Signature-based IDS performs the lowest on this dataset, with an accuracy of 89.3%, as it is unable to adapt to new 

attack patterns not covered by its predefined rules. The Anomaly-based IDS shows moderate performance with 93.1% 

accuracy, benefiting from its capability to learn normal traffic patterns. However, its high false positive rate reduces its 

precision compared to the RL-based model. The Deep Learning-based IDS achieves 94.5% accuracy, demonstrating good 

performance due to its deep neural network architecture. Nonetheless, it falls short of the RL-based approach because of its 

static learning nature, which requires retraining for new attack scenarios. 

 

 In terms of Response Time, the RL-based AIDS is the fastest, averaging 0.020 seconds, compared to 0.055 seconds for the 

signature-based model and 0.040 seconds for the anomaly-based model. This rapid response is attributed to the RL model’s 

dynamic learning capability, allowing it to quickly adapt its policy to changing network conditions. These results highlight the 

proposed system’s ability to effectively detect and respond to threats in more balanced and realistic network scenarios, as 

represented by the NSL-KDD dataset. 

 

Table 2: Performance on NSL-KDD Dataset 

Model Accuracy Precision Recall F1 Score Response Time (s) 

RL-based 

AIDS 
96.5% 97.2% 96.0% 96.6% 0.020 

Signature-

based IDS 
89.3% 91.0% 88.5% 89.9% 0.055 

Anomaly-

based IDS 
93.1% 94.0% 92.5% 93.3% 0.040 

Deep 

Learning-

based IDS 

94.5% 95.3% 94.0% 94.6% 0.035 
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Figure 3: Performance on NSL-KDD Dataset Graph 

 

5.3 Performance on CICIDS 2017 

 The proposed RL-based AIDS demonstrates exceptional performance on the CICIDS 2017 dataset, achieving the highest 

accuracy of 97.8%. This dataset represents modern network environments with complex attack types, including brute force, 

botnets, and distributed denial of service (DDoS) attacks. The RL-based model's Precision of 98.5% indicates its superior 

capability to distinguish between benign and malicious traffic, minimizing false alarms. Its Recall of 97.5% highlights its 

effectiveness in detecting sophisticated and emerging threats. The F1 Score of 98.0% reflects its well-balanced performance, 

combining high precision and recall, making it highly reliable for deployment in complex network environments. 

 

 The Signature-based IDS achieves the lowest accuracy of 90.2% on this dataset due to its inability to detect novel attacks 

that lack predefined signatures. The Anomaly-based IDS performs better with 94.7% accuracy, leveraging its capability to 

identify deviations from normal network behavior. However, it still suffers from a higher false positive rate compared to the 

RL-based approach. The Deep Learning-based IDS shows competitive performance with 95.9% accuracy, benefiting from its 

ability to learn complex traffic patterns. Nonetheless, its static learning approach makes it less adaptable than the RL-based 

model, leading to slightly lower recall and F1 scores. 

 

 The RL-based AIDS also demonstrates the fastest Response Time of 0.015 seconds, significantly outperforming the 

baseline models. This rapid detection and response capability is crucial for mitigating the impact of sophisticated cyber threats 

in real-time network environments. These results confirm the proposed model's adaptability and effectiveness in contemporary 

network scenarios, positioning it as a state-of-the-art solution for intrusion detection. 

 

Table 3: Performance on CICIDS 2017 Dataset 

Model Accuracy Precision Recall F1 Score Response Time (s) 

RL-based 

AIDS 
97.8% 98.5% 97.5% 98.0% 0.015 

Signature-

based IDS 
90.2% 91.8% 89.5% 90.6% 0.060 

Anomaly-

based IDS 
94.7% 95.5% 94.0% 94.8% 0.045 

Deep 

Learning-

based IDS 

95.9% 96.7% 95.5% 96.1% 0.035 
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Figure 4: Performance on CICIDS 2017 Dataset Graph 

 

5.4 Discussion 

 The experimental results across all three datasets consistently demonstrate that the proposed RL-based AIDS outperforms 

the baseline models in terms of accuracy, precision, recall, F1 score, and response time. The significant performance gains are 

particularly noticeable on the CICIDS 2017 dataset, which presents the most challenging and realistic network scenarios. This 

highlights the proposed system's adaptability and robustness in handling complex attack vectors and dynamic network 

conditions. 

 

 The superior performance of the RL-based model is attributed to its ability to learn optimal policies through continuous 

interaction with the environment. Unlike traditional signature-based and anomaly-based models, which rely on static rules or 

fixed patterns, the RL-based model dynamically adapts its policy based on feedback from the environment. This enables it to 

effectively detect both known and unknown attacks, minimizing false positives and false negatives. Additionally, the model’s 

Q-learning algorithm efficiently balances exploration and exploitation, ensuring optimal decision-making with minimal 

response time. 

 

 Compared to deep learning-based IDS, the RL-based AIDS demonstrates better adaptability and faster response times. 

While deep learning models require retraining to adapt to new attack patterns, the RL-based model continuously learns and 

updates its policy, making it more responsive to evolving threats. Furthermore, the proposed system’s faster response time is 

crucial for real-time intrusion detection and mitigation, reducing the potential impact of cyber-attacks. 

 

 Overall, the results indicate that the proposed RL-based AIDS offers a highly effective and efficient solution for network 

intrusion detection, outperforming traditional and state-of-the-art models. Its ability to adapt to dynamic network environments 

and complex attack scenarios makes it a promising approach for enhancing cybersecurity in modern network infrastructures. 

 

6. Discussion 
6.1 Strengths of the Proposed Approach 

 The proposed RL-based Adaptive Intrusion Detection System (AIDS) introduces several noteworthy advantages over 

traditional intrusion detection systems (IDS). One of the most significant strengths is its adaptability. Unlike conventional IDS 

models, which rely on static rules and predefined signatures, the RL-based approach allows the system to learn from network 

traffic patterns continuously. This dynamic learning capability enables the IDS to recognize and respond to new and evolving 

threats that were previously unseen, enhancing its detection accuracy over time. The adaptability of the RL model not only 

improves threat detection but also minimizes false positives by learning to distinguish between benign and malicious activities 

more effectively. 
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 Another key advantage of the proposed system is its efficiency. The RL-based IDS demonstrates faster response times 

compared to traditional IDS models. This efficiency stems from its ability to optimize decision-making processes through 

policy updates, allowing it to react swiftly to potential threats in real time. In a cybersecurity landscape where rapid threat 

mitigation is crucial, this reduced latency significantly enhances the system's effectiveness in preventing damage from attacks. 

Furthermore, the proposed framework offers remarkable flexibility, making it highly adaptable to different network 

environments. Its modular design allows for the integration of additional features, such as new detection methods or enhanced 

response mechanisms, without substantial modifications to the core architecture. This flexibility ensures that the RL-based IDS 

remains relevant and effective in diverse and evolving network infrastructures. 

 

6.2 Limitations and Challenges 

 Despite its strengths, the proposed RL-based AIDS faces several limitations and challenges that require attention. One of 

the primary challenges is the extensive training time required by reinforcement learning algorithms. Due to the complexity of 

large-scale network environments and the need for the agent to explore and learn optimal policies, the training process can be 

computationally expensive and time-consuming. This challenge is particularly pronounced when adapting the system to 

different network setups, as each environment may require a separate training phase to achieve optimal performance. 

Additionally, the quality and quantity of training data significantly impact the effectiveness of the RL-based IDS. Inadequate or 

biased training data can lead to inaccurate threat detection or overfitting, reducing the system's generalizability to real-world 

scenarios. Ensuring comprehensive and representative datasets is therefore critical for maintaining high detection accuracy and 

minimizing false positives. 

 

 Another notable limitation is the interpretability of the RL models used in the proposed framework. Unlike traditional 

machine learning models, which often provide clear decision boundaries or feature importance metrics, RL models operate 

based on complex policy functions and value estimations. This complexity makes it challenging to understand the decision-

making process, leading to a “black-box” effect where the reasoning behind threat detection is not easily explainable. This lack 

of interpretability can hinder trust and adoption in security-sensitive environments where explainability is essential for 

compliance and auditing purposes. Addressing these limitations is crucial for enhancing the reliability and applicability of the 

RL-based IDS. 

 

6.3 Future Work 

 To overcome the identified limitations and further improve the proposed RL-based AIDS, several avenues for future 

research can be explored. One critical area of focus is improving training efficiency. Techniques such as transfer learning, 

where knowledge gained from one environment is transferred to another, can significantly reduce training time by leveraging 

pre-trained models. Additionally, curriculum learning, which gradually increases the complexity of training tasks, can help the 

RL agent learn more efficiently and effectively. These approaches can accelerate the learning process while maintaining high 

detection accuracy across various network environments. 

 

 Another promising direction for future work is enhancing data quality. Developing methods to generate high-quality 

synthetic data for training can address the limitations of inadequate or biased datasets. Techniques such as Generative 

Adversarial Networks (GANs) or data augmentation can be employed to create realistic attack scenarios, enriching the training 

data and improving the generalization capabilities of the RL-based IDS. Furthermore, increasing the interpretability of RL 

models is essential for building trust and transparency in the decision-making process. Investigating techniques like attention 

mechanisms, which highlight relevant features influencing decisions, or integrating explainable AI (XAI) methods, can make 

the inner workings of the RL model more understandable. These enhancements can provide security analysts with actionable 

insights and explanations, facilitating better decision-making and compliance in security operations. 

 

7. Conclusion 
 In conclusion, the proposed RL-based adaptive intrusion detection system (AIDS) demonstrates remarkable advancements 

over traditional IDS approaches in terms of accuracy, adaptability, and response time. By leveraging reinforcement learning, 

the system dynamically learns optimal detection policies, allowing it to effectively adapt to evolving network threats and 

complex attack patterns. The experimental results across the KDD Cup 1999, NSL-KDD, and CICIDS 2017 datasets 

consistently show that the RL-based AIDS outperforms baseline models, including signature-based, anomaly-based, and deep 

learning-based IDS. It achieves superior accuracy, precision, recall, and F1 scores while maintaining fast response times, which 

are critical for real-time threat mitigation. These performance gains underscore the effectiveness of the proposed framework in 

enhancing cybersecurity within modern, dynamic network environments. 
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 The proposed system's ability to learn continuously from the environment not only improves detection accuracy but also 

reduces false positives and false negatives, addressing one of the major limitations of traditional IDS. Despite its success, there 

are challenges that warrant further investigation, such as improving scalability for large-scale networks and enhancing 

robustness against adversarial attacks. Future research can explore advanced reinforcement learning techniques, such as deep 

Q-networks (DQNs) and proximal policy optimization (PPO), to further optimize the model's performance. Additionally, 

integrating the RL-based IDS with cloud and edge computing infrastructures could enhance its scalability and real-time 

processing capabilities. Overall, the proposed RL-based AIDS represents a significant step forward in adaptive and intelligent 

network security solutions, paving the way for more resilient and proactive intrusion detection systems. 
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