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Abstract:  Industrial wireless networks are increasingly expected to support workloads that were traditionally confined to wired 

infrastructure, including real-time robotics, machine vision, and autonomous guided vehicles. The convergence of private 5G 

and Wi- Fi 7 (IEEE 802.11be) offers a promising path toward this goal, but it also introduces a complex and tightly coupled 

control space that is difficult to manage using static rules or isolated optimization strategies. This paper presents a practical, 

AI-driven, multi-objective optimization framework that combines reinforcement learning for radio and slice-level resource 

control, deep learning for encrypted traffic characterization, and anomaly detection for predictive network assurance. We 

describe a cloud–edge architecture and a digital twin-based evaluation environment that allow policies to be trained, tested, and 

deployed under representative industrial workloads. Experimental results show consistent reductions in tail latency and energy 

consumption, along with improved service-level agreement (SLA) compliance, when compared with conventional rule-based 

approaches. 
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1. Introduction 
The rapid adoption of Industry 4.0 technologies is reshaping the role of wireless connectivity on factory floors, in 

warehouses, and across large industrial campuses. Applications such as collaborative robotics, autonomous guided vehicles 
(AGVs), and high-resolution machine vision impose stringent requirements on latency, reliability, and mobility that were 

traditionally met only by dedicated wired networks. At the same time, operators are under pressure to reduce deployment and 

operational costs while maintaining predictable service quality across diverse device classes and traffic profiles. 

 

Private 5G and Wi-Fi 7 have emerged as complementary technologies in this context. Wi-Fi 7 introduces multi-link 

operation (MLO) and ultra-wide channel support in the 6 GHz band, enabling high throughput and low contention for bandwidth-

intensive workloads [1]. Private 5G, in contrast, provides fine-grained quality-of-service control through network slicing and ultra-

reliable low-latency communication (URLLC) modes that are well suited to time-critical control traffic. When these two domains 

are deployed together, they create a heterogeneous access environment that can flexibly support a wide range of industrial 

services. 

 

Managing such a converged environment, however, introduces a high-dimensional decision space. Control parameters span 
radio-level settings, traffic steering policies, slice configurations, and service priorities, all of which interact in non- linear ways under 

dynamic load and interference conditions. Heuristic or rule-based policies often fail to adapt quickly enough or to account for 

longer-term performance and cost trade-offs. This motivates the use of artificial intelligence as a unifying control mechanism. In 

this paper, we formulate cross-domain network management as a multi-objective optimization problem that explicitly balances 

technical performance metrics, such as latency and energy consumption, with business-oriented objectives expressed through 

SLAs. By combining cloud-based model training with low-latency edge inference, the proposed framework aims to deliver both 

global visibility and localized responsiveness in industrial wireless deployments. 

 

This paper makes four primary contributions. First, it presents a converged cloud–edge–access reference architecture that 

unifies control across IEEE 802.11be (Wi-Fi 7) and private 5G domains. Second, it formalizes cross-domain network 

management as a weighted, multi-objective optimization problem that jointly considers latency, energy efficiency, SLA 
compliance, and operational cost. Third, it introduces a reinforcement learning-driven closed-loop control framework that 

integrates deep traffic characterization and anomaly detection with standardized network control interfaces. Finally, it proposes a 

reproducible digital twin environment for safe policy validation under representative industrial workloads. 

 

2. Related Work 
A substantial body of research has explored the application of machine learning in wireless networks, particularly in the areas 

of spectrum management, power control, and mobility optimization. Reinforcement learning-based approaches have been 
widely studied for dynamic channel selection, load balancing, and handover decisions in both cellular and Wi-Fi environments, 

demonstrating the potential for adaptive control policies to outperform static or rule- based configurations under time-varying 

traffic and interference conditions. 
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In parallel, deep learning techniques have been applied to the classification of encrypted traffic flows using statistical, 

temporal, and flow-level features, enabling application-aware network management without reliance on payload inspection. 

Such methods are especially relevant in industrial and enterprise environments, where stringent security and privacy 

requirements limit the feasibility of traditional deep packet inspection and content-based traffic analysis.  

 

From a systems and architectural perspective, industry and standards initiatives, including the ETSI Zero-touch Network and 
Service Management (ZSM) framework and 3GPP studies on the integration of artificial intelligence and machine learning into 

5G-Advanced and beyond, have emphasized closed-loop automation, policy-driven orchestration, and the use of standardized 

service-based interfaces for cross-layer coordination in autonomous networks [2], [3]. 

 

Despite these advances, most existing work has focused on either cellular or Wi-Fi domains in isolation, or on single- 

objective optimization strategies targeting specific performance metrics. Relatively limited attention has been given to the joint, 

multi-objective optimization of converged Wi-Fi 7 and private 5G systems in industrial settings, particularly in conjunction with 

digital twin-based validation environments for safe and reproducible policy evaluation. This paper addresses this gap by 

presenting an end-to-end framework that integrates architectural design, learning-based cross- domain control, and systematic 

performance evaluation under representative industrial workloads. 

 

3. Converged System Architecture 
The proposed architecture adopts a three-tier cloud–edge–access model that separates long-term learning and global policy 

management from real-time, localized control. This separation enables the system to scale across large industrial deployments 

while preserving the low-latency responsiveness required for time-sensitive applications operating under dynamic radio and 

traffic conditions. 

 

At the cloud layer, centralized services are used to train reinforcement learning models, maintain a digital twin of the 
network, and manage service-level agreement (SLA) and business policies. Historical telemetry is stored in time-series databases 

and feature stores, providing a foundation for offline training, model validation, and what-if analysis. Integration with 

operational and business support systems allows service priorities and cost constraints to be expressed as network-level objectives, 

ensuring that technical control decisions remain aligned with broader organizational goals. 

 

The edge layer hosts the real-time intelligence of the system and is deployed on lightweight Kubernetes clusters co- located 

with access gateways. This layer executes inference pipelines for policy evaluation, deep learning-based traffic classification, and 

anomaly detection. By positioning these functions close to the access network, the architecture reduces control-loop latency and 

enables rapid adaptation to local conditions, which is critical for supporting  industrial workloads such as robotics, autonomous 

vehicles, and high-resolution sensing. 

 

The access layer comprises heterogeneous radio domains. The Wi-Fi 7 domain includes IEEE 802.11be access points and 
industrial wireless clients, such as robots, sensors, and vision systems, and exposes metrics including received signal strength 

indicator (RSSI), signal-to-noise ratio, packet error rate, airtime utilization, and multi-link operation (MLO) link statistics. The 

private 5G domain consists of base stations and core network functions that support ultra- reliable low-latency communication 

(URLLC) and enhanced mobile broadband slices for programmable logic controllers and AGVs, providing telemetry such as 

end-to-end latency, jitter, packet loss, and slice utilization. 

 

Together, the telemetry and control interfaces exposed across these layers define the unified state and action space used by 

the learning-based, multi-objective optimization framework described in the following section. 

 
Figure 1:  Illustrates the Bidirectional Flow of Policies, Models, and Telemetry across These Layers, Forming a Closed-Loop Control and 

Learning Framework
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4. Multi-Objective Optimization Model 
The state of the converged network at time t is represented by a unified feature vector, S(t), which aggregates radio- and 

traffic-level metrics from both Wi-Fi 7 and private 5G domains. This vector includes, among other parameters, received signal 

strength indicator (RSSI), signal-to-noise ratio (SNR), packet error rate, queue depth, end-to-end latency, jitter, and slice 

utilization. 

 

The corresponding action vector, A(t), captures the set of control decisions available to the system. These include multi-link 

operation (MLO) link selection, channel width and transmit power adjustment in the Wi-Fi domain, as well as slice 

configuration and traffic steering in the 5G domain. 

 

The optimization objective is expressed as a weighted cost function: 

(𝑡) = 𝑤1 ⋅ (𝑡) + 𝑤2 ⋅ (𝑡) + 𝑤3 ⋅ (𝑡) + 𝑤4 ⋅ (𝑡) 
 

Where L(t) denotes end-to-end latency, V(t) represents the rate of service-level agreement (SLA) violations, E(t) captures 

energy consumption per transmitted bit, and C(t) reflects operational or resource cost. The weighting coefficients are defined by 

operator policy and service priorities, allowing the system to explore explicit trade-offs between performance, efficiency, and cost. 

This formulation defines the reward structure for the learning agent and naturally leads to a Pareto frontier of feasible operating 

points, which provides a structured way to reason about competing objectives in complex industrial deployments. 

 

5. Algorithm Design 
The control problem is modeled as a Markov Decision Process (MDP) [5], in which the network environment evolves in 

response to both control actions and external traffic dynamics. A deep reinforcement learning agent is used to approximate a 

policy that maps observed network states to control actions in a manner that maximizes expected long- term reward under the 

multi-objective cost formulation.  

 

At each decision interval, telemetry data is encoded into the current state vector and processed by a hybrid policy network. 

Actions are selected using an epsilon-greedy strategy that balances exploration of new configurations with exploitation of 

previously learned policies. The selected actions are enforced through standardized network control interfaces, including 

NetConf, gNMI, OpenFlow, and 3GPP service-based APIs.  

 
The reward function penalizes high tail latency, SLA violations, and excessive energy consumption, while rewarding stable 

throughput and robust control behavior. Experience replay and target networks are employed to improve training stability and 

to reduce sensitivity to transient fluctuations in network conditions, enabling more reliable convergence under non-stationary 

industrial workloads.  

 

6. Digital Twin and Cross-Domain Control Loop 
To support reproducible evaluation and safe policy development, a digital twin of the converged network is constructed. 

The twin models radio propagation, device mobility, traffic generation, and interference patterns across both access 

technologies. This environment allows candidate policies to be tested under controlled conditions that closely approximate real 

industrial workloads before deployment in operational networks.  

 

The operational system follows a closed-loop control process in which telemetry is continuously collected, transformed into 

feature vectors, and processed by the learning models. The resulting control actions are evaluated against SLA and business 

policies prior to enforcement in the network. Observed outcomes are then fed back into the learning process as reward signals, 

enabling continuous refinement of the control policy over time. 

 
Figure 2: Depicts This Perception–Decision–Action Loop and Highlights the Role of Feedback in Driving Adaptive Optimization 
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7. Performance Evaluation and Pareto Analysis 
The proposed framework is evaluated using a representative industrial workload mix that includes autonomous guided 

vehicles (AGVs), high-resolution machine vision pipelines, and programmable logic controllers, reflecting a range of latency-

sensitive and bandwidth-intensive traffic profiles commonly found in industrial deployments. The learned control policy is 

compared against two baselines: a conventional rule-based configuration and an SLA-first heuristic that prioritizes service 

guarantees at the expense of energy efficiency and resource utilization. 

 

Evaluation is conducted across a range of operating conditions, including varying traffic loads, device densities, and 

interference levels. Performance is assessed using tail latency, SLA compliance rate, and energy consumption per transmitted bit 

as primary metrics. 

 

Across these scenarios, the AI-driven approach consistently achieves lower tail latency and improved energy efficiency 

relative to both baselines. The resulting Pareto frontier illustrates that the learned policy maintains high levels of SLA compliance 
while operating at lower overall cost, indicating more favorable trade-offs between performance, efficiency, and resource 

consumption in converged industrial network environments. 

 

 
 

Figure 3: Presents the Latency–Energy Trade-Offs For the Different Policy Regimes and Highlights the Relative Dominance of the Learned 

Policy over Heuristic and Rule-Based Baselines 

 

8. Security and Compliance 

The introduction of an AI-driven control plane raises important security and compliance considerations, including the 
integrity of telemetry data, the protection of model artifacts, and the authorization of control actions across distributed network 

elements. The proposed framework addresses these concerns through the use of mutual Transport Layer Security (mTLS) on all 

telemetry and control channels, role-based access control for policy and model management, and cryptographic validation of 

deployed models and control policies. 

 

In addition, anomaly detection components integrated into the edge layer are used to identify abnormal traffic patterns and 

potential attacks in near real time, enabling automated isolation or mitigation of compromised network elements and reducing 

the operational impact of security incidents. 

 

9. Scalability and Deployment Considerations 
All functional components of the framework are implemented as cloud-native microservices that can be independently 

scaled, upgraded, and orchestrated. Kubernetes-based deployment supports horizontal scaling in response to increases in telemetry 

volume or inference load, while service mesh technologies provide secure communication, observability, and fault tolerance 

across distributed deployments. 

 

This design enables the system to be introduced incrementally, beginning with small-scale pilot installations and extending to 

large industrial campuses and multi-site environments without requiring fundamental changes to the underlying control 

architecture. 

 

10. Conclusion 
This paper has presented a practical, AI-driven framework for managing converged private 5G and Wi-Fi 7 networks in 

industrial environments. By combining global learning and policy management in the cloud with low-latency decision-making at the 
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edge, the proposed approach addresses the complexity of cross-domain control while maintaining predictable performance and 

service-level agreement (SLA) compliance. The integration of a digital twin-based evaluation methodology provides a systematic 

foundation for safe testing, validation, and future extensions toward more autonomous and self-optimizing industrial 

connectivity platforms. 
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