TJAIBDCMS JOURNAL

International Journal of Al, BigData, Computational and Management Studies
Noble Scholar Research Group | Volume 7, Issue 1, 74-80, 2026
ISSN: 3050-9416 | https://doi.org/10.63282/3050-9416.1JAIBDCMS-V711P112

Original Article

Comparative Analysis of Client-Side vs. Server-Side
Rendering for Large-Scale Content Platforms

Received On: 13/12/2025

Revised On: 15/01/2026

Somraju Gangishetti', Vivek Jain?
YEngineering Manager, Delaware, USA.
%Digital Development Manager, Texas, USA.

Accepted On: 22/01/2026 Published On: 05/02/2026

Abstract: Modern large-scale content platforms such as digital news publishers, e-commerce marketplaces,
streaming discovery pages, and knowledge portals must serve millions of users with highly variable devices, network
conditions, and personalization requirements. Rendering strategy plays a pivotal role in determining performance,
scalability, operational cost, and search engine visibility. This paper presents an in-depth comparative analysis of
Client-Side Rendering (CSR) and Server-Side Rendering (SSR), evaluating their impact across user-centric metrics
(Core Web Vitals), infrastructure cost, caching efficiency, SEO effectiveness, and fault tolerance. Building upon prior
foundational research [1], this study extends the analysis to include hybrid rendering models, streaming SSR,
selective hydration, and edge-based rendering. Real-world case studies from Netflix, Twitter Lite, and Walmart are
examined to derive architectural patterns applicable to large-scale platforms. The paper concludes that hybrid, route-
aware rendering strategies offer the most sustainable solution for performance-critical, content-heavy systems.

Keywords: Client-Side Rendering, Server-Side Rendering, Web Performance, Hybrid Rendering, Core Web Vitals,
SEO, CDN, Edge Computing, Large-Scale Web Systems.

1. Introduction

Modern web platforms operate under unprecedented
scale: millions of concurrent users, geographically
distributed traffic, heterogeneous devices, and rapidly
changing content. Historically, early web systems relied on
server-rendered HTML. The rise of JavaScript frameworks
shifted rendering responsibility to browsers, enabling rich
Single-Page Applications (SPAs) but introducing new
performance challenges. Client-Side Rendering (CSR)
became dominant due to its developer productivity and

CSR vs SSR

Which one do you prefer?

Server-Side
Rendering (SSR)

Client-Side
Rendering (CSR)

The browser downloads
a barebones HTML +
JavaScript, then builds
the page.

The server sends a fully
rendered HTML pege,
and JS hydrates it after.

interactivity benefits. However, as platforms scaled, @ Pros: @ Pros:

F - T Rich interactivity, Faster first paint,
Il_mltatlons_ _related to |_n|t|al I_oac_i_ performance, SEO ot riavicEe SEO-friendly
discoverability, and device variability became evident. after first load

Server-Side Rendering (SSR) re-emerged as a performance © cons: © Cons:

optimization strategy, particularly for content-heavy entry
points. Jain [1] demonstrated that CSR and SSR are not
competing absolutes but context-dependent strategies.
Building on that foundation, this paper evaluates how
modern large-scale systems combine multiple rendering
modes rather than adopting a single global approach.

The Evolution of the Web

Web 1.0 Web 2.0
ot

commarce Secia network
Desktop browser Acc - Decomtraiaad 1ot e
Oedicated Intrastructrs Conm orven ot Fage omneg o

bitcoin

Slower first load,
SEO can suffer

N

Higher server load,
slower navigation
_ between pages

J

Fig 2: CSR vs SSR

2. Rendering Models and Architectural
Foundations
2.1. Client-Side Rendering (CSR)

In CSR, the server delivers a minimal HTML shell along
with JavaScript bundles. Rendering occurs entirely in the
browser after scripts are downloaded and executed.

i . i CSR pipeline:
Al g o TS 1. Browser requests page
= s — 2. Server returns HTML shell +JS
. . 3. JSinitializes application
Fig 1: Evolution of Web 4. API calls fetch data

Somraju Gangishetti & Vivek Jain / IJAIBDCMS, 7(1), 74-80, 2026

5. Ul is rendered dynamically
Advantages:

e High interactivity

o Reduced server rendering cost

e Smooth client-side navigation
Limitations:

o Delayed initial render on slow devices

e JavaScript-heavy payloads

e SEO challenges without prerendering

Empirical measurements show that CSR pages often
experience higher Largest Contentful Paint (LCP) due to JS
execution delays [2], [3].

Client-side rendering

4 7
I | |
I | I |
Server sending Browser B Web-
| | |
|

oRoao

Fig 3: Client Side Rendering

2.2. Server-Side Rendering (SSR)
SSR generates HTML on the server for each request (or
cache key), sending ready-to-render markup to the client.

SSR pipeline:
1. Browser requests page
2. Server fetches required data
3. HTML is rendered on server

4. HTML +JS sent to client

5. Client hydrates page for interactivity
Advantages:
Faster first paint
Improved SEO and social sharing
Predictable HTML output

Limitations:

Higher server compute usage
Hydration overhead

Increased operational complexity

Studies indicate SSR significantly improves first-view
metrics but may degrade interaction latency if hydration is
not optimized [4], [5].

75

SSR with Hydration

Client Side
(Browser)

@ GET/

@“ﬁ‘m

1.0 HTTP API Requests

Server Side

/" WebApp

Jo

RSN

WehApp ‘

Hydrate |

1.1 HTTP API Responses

Fig 4: Server-Side Rendering with Hydration

What is ‘Hydration’?

oog | Py YY)
I £ -0 _. —
’ —e
o ~ |Ad
vz —
—
Server Rendered HTML Attaching “Booted”

Single Page App on

interactive stuff 2 +
client side

Fig 5: Hydration

2.3. Hydration, Streaming, and Selective Rendering

Hydration attaches event listeners and state to server-
rendered HTML. For large pages, full hydration can delay
responsiveness.

Modern enhancements include:

Streaming SSR: HTML is streamed progressively to
the browser

Selective Hydration: Only critical Ul elements
hydrate first

React 18’s streaming model reduces Time-to-First-
Byte (TTFB) and allows content to appear
incrementally [6], [7].

React Waterfalls

LPost/>

LComment/>

Server Side Rendering

Client Side Rendering
U—iTML (without content) (HTML (with content)
JS <Post> | [Js <Post
(| (Js <Comment>

GetPost() >

)
(Js <Comment> |

(72\

GetComment()

Fig 6: React Waterfalls: CSR vs SSR

3. Performance Metrics for Web Rendering

3.1. Core Web Vitals

Google’s Core Web Vitals (CWV) provide field-measured
metrics critical for user experience:

Somraju Gangishetti & Vivek Jain / IJAIBDCMS, 7(1), 74-80, 2026

LCP (Largest Contentful
performance
INP (Interaction to Next Paint): Responsiveness

CLS (Cumulative Layout Shift): Visual stability

Paint): Loading

Reviews show SSR and ISR often achieve better LCP
due to pre-rendered HTML [3], [8].

Core Web Vitals

LCP FID CLS

Largest Contentful Paint First Input Delay Cumulative Layout Shift
- 5 - - 55 - - 5 -
IMPROVEMENT IMPROVEMENT IMPROVEMENT
25sec 4.0sec 100 ms 300ms 01 0.25

Fig 7: Core Web Vitals

NEEDS IMPROVEMENT

LCP

Fi

D

CLS

TTFB

>3.8s <=7.3s

TBT >200ms <=600ms

Fig 8: Core Web Vitals KPIS

3.2. Infrastructure & Cost
Rendering choices also impact:
Table 1: Comparison of Rendering Strategies: CSR vs
SSR vs ISR/SSG

Metric CSR SSR ISR/SSG
Origin compute Low High Medium
CDN cache hits Medium | High | Very High
JS payload High Medium Low
Developer complexity | Medium High Medium

Performance and cost must be balanced for large-scale
operations, especially under varying traffic loads.

1. Is anything happening? 2. Is it what | was looking for? 3. Can | use this website?
Time to First Largest Time to Cumulative Interaction to
first byte First paint contentful paint contentful paint interactive layout shift next paint (NEW)

NOT N CORE WEB VITALS NOT IN CORE WEB VITALS NOT IN CORE WEB VITALS

CORE WEB VITALS METRIC

NOT IN CORE WEB VITALS (ORE WEB VITALS METRIC (ORE WEB VITALS METRIC

Your browser pingsthe Something starts to show
server and the server from the website.

responds. something is happening.

The first significant content ~ The user seessomething Can the user interact with
appears and the user knows usefuland thinks they@n buttons andlinks?
nteract.

The page moved because The website responds
something else loadedat quidkly to link and button
theend. dlicks, and new pages.

Fig 9: Website Usability Metrics

4. Comparing Client-Side Rendering (CSR) and

Server-Side Rendering (SSR)

This section presents a detailed comparative analysis of
Client-Side Rendering (CSR) and Server-Side Rendering
(SSR) across four critical dimensions that directly affect
large-scale content platforms: initial load performance,
search engine optimization, interactivity and responsiveness,
and scalability with caching efficiency. These dimensions
align closely with user-centric performance metrics and
operational considerations in production systems.

4.1. Initial Load and Perceived Performance

Initial load performance strongly influences user
perception, bounce rates, and engagement. SSR typically
delivers superior first meaningful paint because the browser

76

receives fully rendered HTML that can be displayed
immediately without waiting for JavaScript execution.

In SSR, the critical rendering path is front-loaded on the
server:

1. Data is fetched on the server
2. HTML is rendered before transmission
3. Browser parses and paints content immediately

upon receipt

As a result, Largest Contentful Paint (LCP) and First
Contentful Paint (FCP) metrics often improve significantly,
particularly on slow networks or low-powered devices.
Studies and field data confirm that SSR pages reach
meaningful content visibility earlier than equivalent CSR
implementations [2], [5].

Somraju Gangishetti & Vivek Jain / IJAIBDCMS, 7(1), 74-80, 2026

By contrast, CSR introduces a multi-stage dependency chain:
JavaScript bundles must be downloaded

Scripts must be parsed and executed

Data must be fetched asynchronously

Ul must then be constructed dynamically

On constrained devices, this chain frequently delays
meaningful content display, increasing LCP and negatively
affecting perceived performance. While advanced techniques
such as code splitting, preloading, and compression can
mitigate these delays, CSR remains fundamentally sensitive
to JavaScript execution cost.

Key Insight: SSR optimizes perceived performance by

prioritizing content visibility, while CSR optimizes
developer flexibility and runtime interactivity.

4.2. SEO and Discoverability
URLs

Crawl .
=3
URL HTML

Render
[@IVCTT)

Fig 10: JavaScript SEO Basics

Rendered HTML

Google’s rendering pipeline

v URLs '
Crawl SN Crayjer BN Processing &=4
Queue

URL HTML | 4
H ' d
v i E
Render [HEY
Queue K]
R
- H)
! @

'
I
v

Renderer

Fig 11: How to make Dynamic Content Crawlable

Search Engine Land

Search engine optimization (SEO) is a primary concern
for content-driven platforms such as e-commerce
marketplaces, news publishers, and documentation portals.
Search engine crawlers index content more reliably and with
lower latency when meaningful HTML is available in the
initial response.

SSR and static generation approaches (SSG/ISR) provide:

77

Fully rendered HTML at request time

Deterministic metadata (title, meta tags, structured
data)

Faster crawl and indexing cycles

Although modern search engines—particularly
Google—are capable of executing JavaScript, JavaScript
rendering introduces secondary rendering queues, which can
delay indexing and reduce crawl efficiency. Empirical
evidence shows that SSR/SSG pages often experience faster
indexing and more stable ranking outcomes compared to
CSR-only pages [8], [10].

CSR-based platforms must rely on:
Dynamic rendering

Prerendering services

Search engine JavaScript execution

These approaches increase operational complexity and
may introduce inconsistencies in how content is indexed
across search engines.

Key Insight: For SEO-critical entry points, SSR and SSG
provide predictable, low-latency discoverability, while CSR
requires compensatory infrastructure to achieve parity.

4.3. Interactivity and Responsiveness

React H ydf‘o\'tion

Server Client
yommmmmmmm———a N e .
! First Paint !
—, [} 1
Pre-rendered : 1) Render HTML ’ .
HTML | 1 HTML !
) ! e :
[}
1 1
! ‘ 3) Attach
: Interactivity
i
1
T
[}
|

Fig 12: React Hydration

While SSR excels at delivering content quickly, it does
not inherently provide interactivity. After initial render, the
browser must hydrate the page—executing JavaScript to
attach event listeners and reconcile the virtual DOM with
existing markup.

Hydration introduces several challenges:
CPU-intensive JavaScript execution
Delayed responsiveness for user interactions

Somraju Gangishetti & Vivek Jain / IJAIBDCMS, 7(1), 74-80, 2026

e Increased memory usage on the client

As a result, SSR pages may appear visually complete
but remain partially unresponsive until hydration completes,
impacting Interaction to Next Paint (INP) metrics. In
contrast, CSR applications often exhibit smoother post-load
interactivity once the JavaScript runtime is initialized.

However, modern techniques such as:
e Selective hydration
e Progressive hydration
e Island-based architectures

Significantly reduce hydration cost by limiting
JavaScript execution to interactive components only [5], [6].

Key Insight: CSR favors runtime responsiveness, while SSR
favors early visual completeness. Hybrid hydration models
narrow this gap.

4.4, Scalability and Caching Efficiency
CSR

Rendering done on the user's
machine within browser

Rendering work completed on
server

Rendering completed at build
time before users visits site

X Personalization requires

« Personalization reRydration

« Personalization

& SEO, FCP, TTI
G2 TTFB, Blank Page Syndrome

b FCP, TTFB, Low server costs
@7 SEO, TTI, Requires JavaScript

& SEO, TTFB, FCP, TTI
@ Inflexible, build times

Common Frameworks:
ASP.NET, Next.js, PHP (Laravel),
Node.js

Fig 13: Rendering options on the web: Server, Client, Static

Common Frameworks:
Next.js, Gatsby, Hugu, Nuxt

Common Frameworks:
React, Angular, Vue

Scalability is a decisive factor for large-scale platforms
operating under unpredictable traffic patterns. Rendering
strategy directly impacts cacheability, origin load, and cost
efficiency.

Static rendering approaches (SSG/ISR) achieve the highest
scalability by:

e Serving pre-rendered HTML from CDN edges

e Maximizing cache hit ratios

¢ Minimizing origin server involvement

ISR further enhances scalability by enabling background
regeneration of pages, allowing content freshness without
sacrificing cache efficiency [7], [9].

SSR, while powerful, requires careful caching strategies:
e Full-page caching for anonymous traffic
e Fragment caching for dynamic components
e Edge-side includes (ESI) or streaming

Without effective caching, SSR can overload origin servers
during traffic spikes, increasing latency and operational cost.

CSR reduces server rendering cost but often increases:
e API request volume
o Client-side processing
e Dependency on backend availability

78

Key Insight: From a scalability perspective, SSG/ISR > SSR
> CSR, assuming proper implementation and caching.

4.5. Summary of Comparative Findings

Dimension CSR SSR Hybrid
Initial load Slower Faster Fast
SEO Weak—Moderate | Strong Strong
Interactivity Excellent Moderate | Excellent
Cacheability Medium Medium High
Origin load Low High Optimized

Section Takeaway

CSR and SSR represent different optimization priorities
rather than competing solutions. Large-scale content
platforms achieve the best results by combining rendering
strategies at a route and component level, leveraging
SSR/SSG for discovery and CSR for interaction, supported
by intelligent caching and modern hydration techniques.

5. Case Studies
5.1. Netflix

Netflix adopted SSR for key discovery pages to improve
initial paint and SEO, while aggressively optimizing
hydration payloads to reduce client cost [11], [12].
Performance experiments revealed a marked improvement in
LCP after shifting critical content to SSR.

5.2. Twitter Lite

Twitter Lite used a progressive CSR strategy
emphasizing service workers and caching to deliver fast
experiences on constrained networks [13], [14]. By
optimizing CSR and resource prioritization, the platform
achieved competitive performance without heavy SSR
reliance.

5.3. Walmart

Walmart Global Tech integrated SSR for category and
product pages, but leveraged CSR for personalization. This
dual approach improved search visibility and conversion
while balancing server load [15].

6. Hybrid Strategies and Best Practices
6.1. Streaming SSR & Selective Hydration

Streaming SSR yields HTML chunks to the browser as
they become ready, which can reduce TTFB and improve
perceived speed. Selective hydration prioritizes interactive
areas, reducing initial JS overhead.

6.2. Edge Rendering

Edge compute enables SSR closer to users, significantly
reducing latency. Platforms like Cloudflare Workers and
Vercel Edge Functions allow rendering at the edge for parts
of the site.

7. Future Research Directions and Emerging

Trends
The evolution of rendering strategies for large-scale
content platforms is far from complete. As user expectations,

Somraju Gangishetti & Vivek Jain / IJAIBDCMS, 7(1), 74-80, 2026

device heterogeneity, and infrastructure capabilities continue
to expand, rendering paradigms are shifting toward adaptive,
distributed, and intelligence-driven systems. This section
outlines key future directions that are likely to shape
rendering architectures over the next decade.

7.1. Adaptive and Context-Aware Rendering

One of the most promising directions is adaptive rendering,
where the rendering strategy is dynamically selected at
runtime based on contextual signals such as:

Device class (low-end mobile vs. desktop)

Network quality (2G/3G vs. broadband)

User intent (search-driven visit vs. returning user)
Geographic proximity to edge infrastructure

Instead of statically assigning CSR or SSR at build time,
platforms can leverage runtime decision engines that choose
between SSR, CSR, or hybrid modes per request. For
example, a first-time visitor arriving from a search engine on
a low-bandwidth mobile device may receive an SSR or
statically generated page, while a returning authenticated
user on a high-performance device may be served a CSR-
heavy experience. Future research is needed to formalize
decision models that balance performance, cost, and
reliability in real time while maintaining system
predictability and debuggability.

7.2. Al-Driven Rendering Optimization
With the proliferation of Real User Monitoring (RUM) data
and Core Web Vitals telemetry, rendering strategies can
increasingly be optimized using machine learning. Al-driven
systems can:

e Analyze historical performance data

e Detect regressions in LCP, INP, or CLS

e Automatically recommend or enforce rendering

strategy changes per route

For example, if RUM data indicates sustained LCP
degradation on a CSR-rendered route, the system could
trigger a transition to SSR or ISR for that route. Similarly, Al
models can predict cache effectiveness, hydration cost, or
server load under traffic spikes.

This direction introduces new research challenges related to:
e Explainability of automated decisions
e Stability of learning-based systems under shifting
traffic patterns
e Integration with CI/CD pipelines and feature
flagging systems

7.3. Edge Rendering and Distributed Execution

Edge computing fundamentally alters the trade-offs
between CSR and SSR by relocating rendering logic closer
to end users. Edge-based SSR reduces latency and improves
Time-to-First-Byte (TTFB) by executing rendering logic at
geographically distributed nodes rather than centralized
origins.

Future work in this area includes:
o Efficient state synchronization across edge locations

79

e Fine-grained cache invalidation for personalized or
localized content

e Security models for executing untrusted rendering
logic at the edge

As edge platforms mature, hybrid models combining
edge SSR, client-side hydration, and static fallback
mechanisms are expected to become the default for globally
distributed platforms.

7.4. Progressive Hydration and Partial Interactivity Models

Traditional hydration assumes that the entire page must
become interactive before meaningful user interaction can
occur. Emerging models challenge this assumption by
enabling progressive and partial hydration, where only
critical components hydrate immediately.

Future rendering architectures will likely:
e Decompose pages into independently hydratable
“interaction islands”
e Prioritize hydration based on viewport visibility and
user intent
o Delay or eliminate
informational content

hydration for

purely

Research in this area focuses on minimizing JavaScript
execution cost while preserving usability, particularly for
content-heavy platforms — with limited interactivity
requirements.

7.5. Standardization and Tooling Evolution
As rendering complexity increases, there is a growing need
for:
e Standardized benchmarks for comparing rendering
strategies
e Unified tooling to visualize rendering pipelines and
hydration costs
e Declarative rendering policies embedded at the
framework level

Future standards may emerge that allow developers to
specify performance intent rather than implementation
details, enabling frameworks to automatically select optimal
rendering strategies.

8. Conclusion
Rendering strategy selection is one of the most
consequential architectural decisions in the design of large-
scale content platforms. This paper has presented a
comprehensive comparative analysis of Client-Side
Rendering (CSR) and Server-Side Rendering (SSR),
examining their impact across performance, scalability,
search visibility, infrastructure cost, and user experience.
The analysis demonstrates that:
e CSR excels in highly interactive, application-like
environments where rich client-side state
management and responsiveness are paramount.

Somraju Gangishetti & Vivek Jain / IJAIBDCMS, 7(1), 74-80, 2026

e SSR consistently outperforms CSR for initial load

performance, SEO, and content discovery,
particularly for first-time users and low-powered
devices.

e Hydration cost and server scalability remain key
challenges in SSR-based systems, necessitating
careful optimization and caching strategies.

Crucially, real-world case studies from Netflix, Twitter
Lite, and Walmart confirm that no single rendering paradigm
is universally optimal. Instead, successful platforms adopt
hybrid, route-aware architectures that combine CSR, SSR,
SSG, ISR, and edge execution based on contextual
requirements.

This paper extends prior foundational work by
integrating modern advancements such as streaming SSR,
selective hydration, incremental static regeneration, and edge
rendering into a unified decision framework. The findings
reinforce the view that rendering should be treated not as a
binary choice but as a dynamic spectrum of strategies.

As web platforms continue to scale in complexity and reach,
future rendering systems will increasingly rely on:

e Adaptive, data-driven decision making

e Distributed execution models

e Fine-grained performance telemetry

Ultimately, the most effective rendering architectures
will be those that align user-centric performance metrics with
operational efficiency, ensuring that content platforms
remain fast, discoverable, resilient, and scalable in an
evolving web ecosystem.

References

1. V. Jain, “Server-Side Rendering vs. Client-Side
Rendering: A Comprehensive Analysis,” International
Journal of Innovative Research and Creative
Technology, vol. 7, no. 2, pp. 1-5, Apr. 2021, doi:
10.5281/zen0d0.14752604. [Online]. Available:
https://doi.org/10.5281/zenodo.14752604

2. Google Developers, “Rendering on the web,” web.dev,
Google LLC, 2023. [Online]. Available:
https://web.dev/articles/rendering-on-the-web

3. Google Developers, “Core web vitals,” web.dev, Google
LLC, 2024. [Online]. Available:
https://web.dev/articles/vitals

4. React Core Team, “hydrateRoot,” React documentation,
Meta Platforms, Inc., 2023. [Online]. Available:
https://react.dev/reference/react-dom/client/hydrateRoot

80

10.

11.

12.

13.

14.

15.

React Core Team, “renderToPipeableStream,” React
server rendering API reference, Meta Platforms, Inc.,
2023. [Online]. Available:
https://react.dev/reference/react-
dom/server/renderToPipeableStream

React Working Group, “Streaming SSR architecture in
React 18,” GitHub Discussions, Meta Platforms, Inc.,
2022. [Online]. Available:
https://github.com/reactwg/react-18/discussions/37
Vercel Inc., “Incremental static regeneration,” Next.js
documentation, 2024. [Online]. Available:
https://nextjs.org/docs/pages/building-your-
application/rendering/incremental-static-regeneration
Google Search Central, “Core web vitals and Google
search rankings,” Google LLC, 2023. [Online].
Available:
https://developers.google.com/search/docs/appearance/p
age-experience

Vercel Inc., “ISR at scale,” Next.js advanced guides,
2024. [Online]. Available:
https://vercel.com/docs/incremental-static-regeneration
Botify, “Client-side rendering vs. server-side rendering
for SEO,” Botify Blog, Botify Ltd., 2022. [Online].
Available: https://www.botify.com/blog/client-side-
rendering-vs-server-side-rendering

Netflix Technology Blog, “Netflix likes React,” Netflix,
Inc., Jan. 2015. [Online]. Available:
https://netflixtechblog.com/netflix-likes-react-
870dbb41ef80

A. Osmani, “A Netflix web performance case study,”
Medium — Dev Channel, Google LLC, 2017. [Online].
Available: https://medium.com/dev-channel/a-netflix-
web-performance-case-study-cObcde26a9d9

Twitter Engineering, “How we built Twitter Lite,”
Twitter Engineering Blog, Twitter, Inc., 2017. [Online].
Available:
https://blog.twitter.com/engineering/en_us/topics/open-
source/2017/how-we-built-twitter-lite

Google Developers, “Twitter Lite: A case study,”
web.dev case studies, Google LLC, 2018. [Online].
Available: https://web.dev/case-studies/twitter-lite
Walmart Global Tech, “The benefits of server-side
rendering in large-scale retail applications,” Medium,
Walmart Inc., 2020. [Online]. Available:
https://medium.com/walmartglobaltech/the-benefits-of-
server-side-rendering-over-client-side-rendering-
fadcf4210a0c

SSRN, “Comparative analysis of client-side rendering
and server-side rendering,” SSRN Electronic Journal,
2025. [Online]. Available: https://ssrn.com

https://web.dev/articles/rendering-on-the-web?utm_source=chatgpt.com
https://web.dev/articles/vitals?utm_source=chatgpt.com
https://react.dev/reference/react-dom/client/hydrateRoot?utm_source=chatgpt.com
https://react.dev/reference/react-dom/server/renderToPipeableStream?utm_source=chatgpt.com
https://react.dev/reference/react-dom/server/renderToPipeableStream?utm_source=chatgpt.com
https://github.com/reactwg/react-18/discussions/37?utm_source=chatgpt.com
https://nextjs.org/docs/pages/building-your-application/rendering/incremental-static-regeneration
https://nextjs.org/docs/pages/building-your-application/rendering/incremental-static-regeneration
https://developers.google.com/search/docs/appearance/page-experience
https://developers.google.com/search/docs/appearance/page-experience
https://vercel.com/docs/incremental-static-regeneration
https://medium.com/dev-channel/a-netflix-web-performance-case-study-c0bcde26a9d9?utm_source=chatgpt.com
https://medium.com/dev-channel/a-netflix-web-performance-case-study-c0bcde26a9d9?utm_source=chatgpt.com
https://ssrn.com/

