
International Journal of AI, BigData, Computational and Management Studies

Noble Scholar Research Group | Volume 7, Issue 1, 70-73, 2026

ISSN: 3050-9416 | https://doi.org/10.63282/3050-9416.IJAIBDCMS-V7I1P111

Original Article

Agentic Leave and Dispatch Automation for Trucking

Fleets Using MCP and LLMs

Vamshi Krishna Malthummeda

Independent Researcher, USA.

Received On: 11/12/2025 Revised On: 13/01/2026 Accepted On: 20/01/2026 Published On: 04/02/2026

Abstract: Large trucking companies employing thousands of drivers operate in a complex work pattern with weekend

and night shift operations. These kinds of large fleets face operational disruptions due to unplanned absences by the

drivers. Looking up the leave balances in the HR system manually and rescheduling dispatches are slow, error-prone,

and often result in unexpected payroll deductions due to insufficient leave balances. This paper presents

Conversational Dispatcher Bot installed as an app on mobile phone which leverages Large Language Models (LLM)

to understand driver queries and use Model Context Protocol(MCP) for secure enterprise tool calling. Using MCP

server bot connects to HR system to check leave balances, leave eligibility, estimates the payroll deductions, process

the leave and connects to Scheduling system to reassign affected pickups/drop-offs to the alternate qualified drivers.

The proposed architecture transforms driver’s phone into operational control interface reducing the dispatcher

workload immensely, improving scheduling continuity, increasing policy transparency and lowering driver attrition

through fair and explainable decision-making.

Keywords: Large Language Models (Llms), Python, Flutter, Model Context Protocol, Postgres, REST API,

Conversational Bot, Lang Graph, Tool Calling.

1. Introduction
Trucking companies operating large fleets need to ensure

driver availability to take care of committed pickup and

drop-offs. Fleet operators will have some kind of

contingency plans for the planned absences by the drivers.

But unplanned absences are challenging and get even more

complicated when the drivers operate on various types of

schedules as described below:

 4-day work followed by 3 days off pattern and work

can start on any day of the week.

 2-days work followed by 1 day off pattern

 Similarly, 5 day work followed by 2 day off pattern

and 6-day work followed by 1 day off pattern

 On top of the above patterns, some drivers work on

night shifts

In such kinds of scenarios, dispatchers manually verify

leave balance via HR portals, validate policy eligibility, and

then reschedule loads using dispatch systems. This entire

process is time-consuming, error-prone and not scalable,

which introduces delays and increases the likelihood of

missed delivery deadlines, and customer dissatisfaction. At

the same time, unexpected payroll deductions for exhausted

leaves frequently cause disputes. Lack of transparency

damages trust and contributes to higher driver turnover.

To solve the above problems, we propose the self-

service LLM-based mobile chatbot app that automates the

leave management and dispatch continuity workflow. The

bot uses MCP tool calling to interact with enterprise systems

and execute actions such as leave posting, unpaid leave

confirmation, deducting leave balance, payroll deduction

initiation and load reassignment.

2. Problem Statement
Large trucking companies struggle with endemic pain points

like severe driver shortages, high turnover, and retention

issues[1]. Unplanned absence management is very important

to address high turnover and retention issues. Below is the

breakdown of the challenges faced in Unplanned absence

management:

 Leave Balance Verification at Scale: There will be

lot many factors considered before processing a

driver’s leave application which includes leave

balance, type of the driver (Part-Time/Full-Time),

jurisdiction of the driver (each jurisdiction will have

its own leave policy), work schedule of the driver,

weekend and night shift entitlements, carry-over,

accrual, leave replenishment and black out and

various other rules. Validating these rules manually

or via HR portal by dispatcher or via self-servicing

HR portal by a driver is a time-consuming process

(which is rare as most drivers never login to a

company HR portal).

 Payroll risk and low trust: Most of the time drivers

contact logistics division dispatcher to let them

know about their unplanned absence which can

span multiple days and dispatcher prioritizes

dispatch continuity, works on identifying the

alternate qualified driver to take the assignment,

Vamshi Krishna Malthummeda / IJAIBDCMS, 7(1), 70-73, 2026

71

applies the time-off on behalf of the driver. HR

system checks the leave balance for the driver, if

enough balance is available then leave balance is

decreased by those many days in the leave period. If

the driver does not have enough leave balance then

payroll deductions will be triggered. This results in

drivers feeling treated unfairly and increases the risk

of driver attrition.

 Dispatch Instability Due to Absences: When the

driver becomes unavailable, the dispatcher

scrambles to identify the impacted pickup/drop-offs

during the leave period, locate alternate qualified

drivers, ensure shift and Hours of service feasibility

(sometimes the violations will be tagged to the

driver for driving more than stipulated hours) and

finally dispatcher need to avoid SLA violations.

This adds significant operational stress and may

result in missed deliveries.

3. Proposed System Overview
The above problems listed in the problem statement can be

addressed using a Dispatcher Chatbot mobile app that

executes the following workflow:

1. Driver launches the Dispatcher Chatbot on his

phone and applies for a leave of absence

2. LLM parses the input provided by the driver and

extracts the leave period start and end datetimes

3. Bot calls the HR system via MCP tools to verify the

leave balance

4. Bot applies policy rules based on schedule pattern

5. If leave balance is sufficient → approve leave

6. If leave is insufficient → then driver will be notified

about insufficient leave balance and driver will be

given a chance to revisit his leave plans or give the

consent for unpaid leave which results in payroll

deductions.

7. After confirmation from the driver either leave

balance will be decreased or unpaid leave request

will be submitted, which results in the payroll

deduction.

8. Bot calls scheduling system via MCP tools to

retrieve impacted loads.

9. Bot selects replacement drivers and reassigns tasks

automatically.

10. System sends confirmations to driver + dispatch +

replacement drivers

This provides closed-loop operational automation, not

just a chatbot response engine.

Contributions of this paper

The key novelty of this work lies in converting a driver-

facing chatbot into a real operational engine:

1. Mobile-first conversational dispatch automation:

drivers initiate leave actions directly from their

phones.

2. LLM-driven MCP tool calling: dynamic

orchestration of HR and scheduling tools rather than

hardcoded workflows.

3. Closed-loop leave-to-dispatch workflow: leave

decisions automatically trigger load reassignment.

4. Consent-based payroll deduction mechanism:

unpaid leave is applied only after explicit driver

confirmation.

5. Scalable for complex rosters: explicitly supports

multi-pattern schedules including weekend and

night shifts.

6. Auditability and enterprise compliance: all actions

are logged through MCP tool traces.

Core Workflow: Paid Leave Verification & Approval

Fig 1: Leave Approval Workflow

Vamshi Krishna Malthummeda / IJAIBDCMS, 7(1), 70-73, 2026

72

4. Architecture Design and Core Components
The proposed mobile Dispatcher Bot will be developed

entirely using Flutter, a cross-platform framework that

ensures the app functions smoothly across Android and iOS

devices. Flutter was chosen for its flexibility, real-time

rendering capabilities, and ability to create a highly

responsive user interface[2]. The core intelligence layer is

implemented using an LLM-driven agent framework in

Python, where LangGraph is used to model the end-to-end

workflow as a stateful, multi-step execution graph with

policy checkpoints and conditional transitions (e.g., paid

leave approval vs. unpaid leave confirmation)[3]. The bot

leverages LangChain agent and tool abstractions to enable

structured tool invocation, dynamic tool selection, and safe

multi-step execution with error handling[4][5]. Enterprise

connectivity is achieved through a dedicated MCP (Model

Context Protocol) Server, which exposes authenticated HR

and scheduling capabilities as standardized tools[6][7].

 Mobile Chatbot Application (Driver Interface): The

application will be deployed on the driver’s phone.

Driver will be launching the Chatbot app and will

be conversing and making requests in chat window

in the natural language such as “I need leave from

today till next Monday”

 LLM Orchestration Layer: In this layer LLM

initially tries to understand the intent of the driver

(leave request or schedule change), next it will

extract the entity information like driver

identification, start and end datetimes of the leave

period etc. then decides to call which tool (HR

system related tool or Scheduling system tool)

 MCP Server (Enterprise Tool Gateway): The MCP

server exposes authenticated enterprise capabilities

as tools. Provides consistent interface for multiple

enterprise vendors, provides centralized tool

permissioning, safer abstraction compared to raw

API exposure and audit friendly tool traces.

HR Tools

 get_leave_balance(driver_id)

 get_leave_policy(driver_id, date_range, shift_type)

 create_leave_request(driver_id, leave_type,

date_range)

 estimate_pay_deduction(driver_id, hours,

pay_period)

 apply_unpaid_leave(driver_id, date_range)

 register_payroll_deduction(driver_id, amount,

pay_period)

Dispatch/Scheduling Tools

 get_driver_schedule(driver_id, date_range)

 get_assigned_pickups_dropoffs(driver_id,

date_range)

 find_available_drivers(criteria)

 reassign_load(load_id, new_driver_id)

 notify_dispatch_team(event_payload)

MCP enables clean separation between the agent and

external systems, improving modularity and security.

External Systems: The external systems host all the

authoritative data.HR system maintains the leave rules and

accruals, employee information (driver identification, hire

date, work anniversary date, region, shift type, employment

type etc.), payroll integration, unpaid leave deductions.

Scheduling / Dispatch System maintains routes, loads,

pickups/drop-offs, driver availability and assignments

Audit and Logging Layer: Stores tool calls + responses,

driver confirmation history, leave approvals and payroll

actions, load reassignment transactions.

Fig 2: Core Components of the Chatbot

Vamshi Krishna Malthummeda / IJAIBDCMS, 7(1), 70-73, 2026

73

5. Conclusion
This paper introduced an MCP-enabled mobile LLM

Dispatcher Bot designed for large trucking fleets with

complex schedules. By combining natural language

interaction, secure enterprise tool calling via MCP, consent-

driven payroll deduction workflows, and automated dispatch

reassignment, the proposed system improves operational

continuity while enhancing driver trust. The architecture

reduces dispatcher workload, prevents scheduling disruption,

decreases payroll disputes, and offers a scalable approach to

reduce driver attrition in high-frequency logistics

environments.

References
1. Procter, D., & Sousa Jr, P. (2021). Goldilocks and the

Three Dispatchers: Quantifying the Impact of

Dispatcher Management on Truck Driver Performance.

2. Agarwal, K., Ananthanarayanan, S., & Srinivasan, S.

(2024). Enhancing iot based plant health monitoring

through advanced human plant interaction using large

language models and mobile applications. arXiv preprint

arXiv:2409.15910.

3. Sapkota, R., Shrestha, R., Rijal, M., & Karkee, M.

LangChain vs. LangGraph vs. LangSmith: Taxonomies

of Agentic AI Toolchains for End-to-End

Orchestration. Authorea Preprints.

4. Jeong, C. (2025). A Study on the MCP x A2A

Framework for Enhancing Interoperability of LLM-

based Autonomous Agents. arXiv preprint

arXiv:2506.01804.

5. Agents - Docs by LangChain

6. Ding, P. (2025). Toolregistry: A protocol-agnostic tool

management library for function-calling llms. arXiv

preprint arXiv:2507.10593.

7. Model Context Protocol (MCP) - Docs by LangChain.

https://docs.langchain.com/oss/python/langchain/agents
https://docs.langchain.com/oss/python/langchain/mcp

