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Abstract: User onboarding is a decisive phase in mobile e-commerce applications, where early friction or cognitive
overload can significantly impact user retention and conversion. Despite its importance, onboarding flows are
typically static and uniform, ignoring contextual signals available during the first application run. This paper
proposes a context-aware onboarding flow adaptation framework that leverages first-run prediction models to
dynamically tailor onboarding experiences in real time. The proposed approach observes lightweight contextual,
behavioral, and system-level signals—such as acquisition source, device performance tier, network quality, and early
interaction velocity—to infer user intent and friction tolerance during the first session. Based on probabilistic
predictions, onboarding components including authentication prompts, permission requests, tutorials, and feature
discovery are reordered, deferred, or suppressed. The framework is designed for Android-based e-commerce
applications and integrates with modern architectures using Jetpack Compose, Kotlin coroutines, and
experimentation platforms. Experimental evaluation under simulated production-scale workloads demonstrates
improvements in onboarding completion rate, time-to-first-action, and early-session conversion, without measurable
regressions in application startup performance. The results suggest that adaptive onboarding driven by first-run pre-
diction models offers a scalable and performance-safe alternative to static onboarding designs.

Keywords: Mobile Onboarding, First-Run Experience, Context-Aware Systems, Predictive Modeling, Android

Architecture, E-Commerce Applications.

1. Introduction

Mobile e-commerce applications operate in an
increasingly competitive landscape where user expectations
for speed, relevance, and simplicity are high. The onboarding
experience represents the first sustained interaction between
a user and an application, often determining whether the
application is retained, explored, or abandoned. Studies
consistently show that a significant percentage of users churn
within the first session, frequently due to friction introduced
during onboarding.

Traditional onboarding flows are designed as static
sequences that expose users to tutorials, permission requests,
personalization prompts, and account creation steps in a
fixed order. While such flows are easy to reason about and
implement, they fail to account for the diversity of users
entering modern e-commerce platforms. Users arrive through
multiple acquisition channels, operate under varying network
and de-vice conditions, and exhibit different levels of intent
ranging from casual exploration to immediate purchase
readiness. In production-scale e-commerce systems, a static
onboard-ing strategy often results in suboptimal outcomes.
High-intent users may abandon the app when forced through
unnecessary educational steps, while low-intent users may
struggle to understand core value propositions due to overly
abbreviated flows. Moreover, aggressive onboarding can

negatively affect startup performance, increasing cold-start
time and early-session instability.

This paper introduces a Context-Aware Onboarding
Flow Adaptation framework that dynamically adjusts
onboarding behavior during the first application run. By
applying lightweight prediction models early in the user
session, the framework enables onboarding experiences that
align more closely with user intent and context while
respecting Android performance and lifecycle constraints.
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multiple acquisition channels, operate under varying network
and de-vice conditions, and exhibit different levels of intent
ranging from casual exploration to immediate purchase
readiness.

In production-scale e-commerce systems, a static
onboarding strategy often results in suboptimal outcomes.
High-intent users may abandon the app when forced through
unnecessary educational steps, while low-intent users may
struggle to understand core value propositions due to overly
abbreviated flows. Moreover, aggressive onboarding can
negatively affect startup performance, increasing cold-start
time and early-session instability.

This paper introduces a Context-Aware Onboarding
Flow Adaptation framework that dynamically adjusts
onboarding behavior during the first application run. By
applying lightweight prediction models early in the user
session, the framework enables onboarding experiences that
align more closely with user intent and context while
respecting Android performance and lifecycle constraints.

2. Background and Related Work
2.1. Onboarding in Mobile Applications

Onboarding has been widely studied as a determinant of
user engagement and retention in mobile systems. Common
onboarding elements include walkthrough screens, feature
tutorials, permission prompts, and account registration. Prior
work emphasizes the importance of minimizing early
friction, yet most solutions rely on static design heuristics or
coarse-grained cohort-based experimentation. A/B testing
frameworks allow teams to evaluate alternative onboarding
variants, but once a variant is selected for a user, it typically
remains static throughout the session. This limits
responsiveness to real-time user behavior and contextual
changes.

2.2. Context-Aware Computing

Context-aware computing focuses on adapting system
be-havior based on environmental, system, and user-related
sig-nals. In mobile platforms, context has been used
extensively for recommendation systems, location-based
services, and adaptive Ul rendering. However, its application
to onboarding flow control remains limited, largely due to
concerns around complexity, performance overhead, and
model reliability dur-ing early sessions.

2.3. Predictive Models in First-Run Scenarios

First-run prediction models differ from traditional
person-alization models in that they must operate with
minimal historical data. Such models typically rely on sparse
signals and must produce results quickly to be useful during
on-boarding. Recent advances in lightweight classification
models and rule-augmented inference have made first-run
prediction increasingly viable for real-time decision-making
on mobile devices.

3. Problem Statement and Design Goals
Despite the availability of contextual signals during appli-
cation launch, most onboarding systems fail to exploit them
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effectively. This results in three primary limitations:
e Uniformity: AIll users experience the
onboarding regardless of intent or context.
e Early Friction: Permission and authentication
prompts are often presented prematurely.
e Performance Risk: Complex onboarding
in-creases cold-start latency and instability.

same

logic

The design goals of the proposed framework are therefore:
e Adaptivity: Tailor onboarding flows based on
real-time first-run predictions.
e Performance Safety: Avoid regressions in startup
time and Ul responsiveness.
e Explainability: Ensure  onboarding
remain deterministic and debuggable.

decisions

e Scalability: ~ Support  experimentation  and
continuous optimization at scale.
4. System Architecture
4.1. High-Level Overview
The proposed system introduces an Onboarding

Orchestration Layer that operates between application
initialization and Ul composition. This layer is responsible
for collecting contextual signals, invoking the first-run
prediction model, and constructing an onboarding state graph
appropriate for the predicted user profile.

At a high level, the system consists of four core components:
Context Signal Collector

First-Run Prediction Engine

Onboarding Flow Orchestrator

Telemetry and Experimentation Interface

The orchestration logic executes asynchronously and
defaults to a safe baseline flow when prediction confidence
is insufficient.

4.2. Context Signal Collection
Signals are intentionally lightweight and include:

e  Acquisition source (organic, paid, deep link)
Device performance tier
Network quality at launch
Time-to-first-interaction
Initial navigation patterns

No personally identifiable information is required,
ensuring compliance with privacy constraints.

5. First-Run Prediction Model
5.1. Model Objectives
The first-run prediction model estimates the likelihood that a

user belongs to one of several coarse-grained intent
categories, such as:

e High-intent (purchase-oriented)

o  Exploratory

e Uncertain

The model output is probabilistic rather than

deterministic, allowing the orchestration layer to apply
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conservative adaptations when confidence is low.

5.2. Inference Constraints

Because inference occurs during first run, the model must:
e  Execute within strict latency budgets
¢ Avoid blocking Ul initialization
e  Fail gracefully under uncertainty

For these reasons, the system favors lightweight
classifiers and rule-augmented inference over deep models.

6. Android Implementation Considerations
6.1. Lifecycle-Safe Orchestration

A critical requirement of context-aware onboarding is
ensuring that prediction and flow orchestration do not violate
Android lifecycle constraints. The onboarding orchestration
layer is initialized during application startup but executes
asynchronously using lifecycle-aware coroutine scopes.
This prevents orphaned execution when the application
process is paused or terminated during early startup.

The onboarding graph is resolved before first Ul
composition, ensuring that no recomposition or navigation
resets occur after the Ul becomes visible. This approach
avoids visual flicker and preserves deterministic navigation
behavior.

6.2. Jetpack Compose Navigation Modeling

Onboarding flows are represented as a state-driven
navigation graph, where each onboarding step is a
compostable node gated by orchestration decisions. The
framework dynamically prunes or reorders nodes based on
prediction output. Because Compose navigation graphs are
immutable after creation, the orchestrator computes the
graph once and passes it into the Ul layer as a resolved
configuration. This design eliminates runtime branching
inside composables and preserves Ul predictability.

6.3. Startup Performance Budgeting

Prediction inference is strictly bounded by startup
performance budgets. If inference exceeds the allowed time
window, the system immediately falls back to a static
baseline on-boarding flow. This ensures that onboarding
adaptation never compromises cold-start latency. In
production experiments, inference execution accounted for
less than 2% of total startup time on median-tier devices.

7. Experimental Setup
7.1. Evaluation Environment

The evaluation was conducted using a production-
representative Android e-commerce application that supports
browsing, search, personalization, and checkout workflows.
Experiments were executed across a combination of physical
devices and emulators representing low-, mid-, and high-tier
hardware. To simulate real-world conditions, users were
assigned acquisition sources (organic, paid, deep link) and
network profiles (Wi-Fi, LTE, constrained). Each test run
executed a full first-run session from cold start through first
meaningful interaction.
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7.2. Compared Strategies
Three onboarding strategies were evaluated:
e Static Baseline Onboarding — A traditional fixed
on-boarding sequence
e  Experiment-Driven Variant
assigned A/B variants
e Context-Aware Adaptive
Proposed framework

Onboarding — Pre-

Onboarding

Each strategy was evaluated across identical traffic
distributions to ensure comparability.

7.3. Metrics Collected
The following metrics were collected and analyzed:

e  Onboarding completion rate
Time-to-first-product-view
Time-to-first-interaction
First-session conversion likelihood
Early-session crash rate
Cold-start duration

Statistical significance was validated using repeated
trials and confidence interval analysis.

8. Results and Evaluation
8.1. Onboarding Completion

The context-aware onboarding framework achieved a
19-23% increase in onboarding completion rate compared to
the static baseline. Improvements were most pronounced for
users arriving via deep links and paid acquisition channels.

8.2. Time-to-First-Action

Adaptive onboarding reduced median time-to-first-
product-view by approximately 22%, primarily by deferring
non-critical tutorials and permission prompts for high-intent
users.

8.3. Conversion Impact

First-session conversion likelihood increased by 14%
relative to the baseline onboarding flow. This improvement
was consistent across device tiers and network conditions.

8.4. Stability and Performance

No statistically significant regression was observed in
cold-start duration or early-session crash rates. This confirms
that the orchestration and prediction pipeline operates safely
within Android performance constraints.

9. Discussion and Threats to Validity
9.1. Key Insights

The results demonstrate that onboarding personalization
does not require long-term user history to be effective. Even
sparse first-run signals provide sufficient information to
meaningfully adapt onboarding flows.  Separating
orchestration logic from Ul composition proved essential for
maintainability, experimentation velocity, and performance
safety.

9.2. Threats to Validity
Several threats to validity must be acknowledged:
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e Model Generalization: Prediction accuracy may
vary across regions or acquisition mixes

e Signal Noise: Early-session signals can be volatile

o Experiment Bias: Real-world traffic distributions
may shift over time

These risks are mitigated through conservative fallback
strategies and continuous telemetry monitoring.

10. Conclusion

This paper presented a context-aware onboarding flow
adaptation framework that leverages first-run prediction
models to dynamically tailor onboarding experiences in e-
commerce mobile applications. By aligning onboarding
complexity with inferred user intent and runtime context, the
system improves engagement, conversion, and performance
predictability.

Unlike static or experiment-only approaches, the
proposed framework adapts onboarding behavior in real time
while preserving Android lifecycle safety and startup
performance. The empirical results demonstrate that first-run
adaptation is both technically feasible and commercially
impactful at scale. As mobile applications continue to grow
in complexity and competition, adaptive onboarding systems
represent a critical Evolution in user experience engineering.
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