
 International Journal of AI, BigData, Computational and Management Studies

Noble Scholar Research Group | Volume 7, Issue 1, 39-44, 2026

ISSN: 3050-9416 | https://doi.org/10.63282/3050-9416.IJAIBDCMS-V7I1P106

Original Article

AutoML-Enabled Infrastructure for Adaptive

Personalization in High-Traffic Shopping Events

Udit Agarwal

Independent Researcher, USA.

Received On: 27/11/2025 Revised On: 29/12/2025 Accepted On: 06/01/2026 Published On: 17/01/2026

Abstract: The necessity for highly adaptable, ultra-low latency personalization systems is critical in high-traffic e-

commerce environments, particularly during unpredictable demand surges such as high-volume shopping events.

Traditional machine learning (ML) paradigms, constrained by manual feature engineering, model design, and slow

iteration cycles, are fundamentally unsuitable for managing massive, unpredictable load and dynamically changing

user intent during peak traffic events. This paper introduces a resilient architectural framework built upon the

Automated Machine Learning (AutoML) paradigm, specifically optimized for deep recommender systems

(AutoRecSys). The proposed architecture details an ultra-low latency feature pipeline integrating Apache Kafka for

high-frequency ingestion, Apache Flink for stream processing, and dedicated Feature Stores (Redis/Delta Lake) to

mitigate catastrophic train/serve skew and ensure comprehensive data consistency. The efficacy of AutoRecSys

techniques such as sampling-based searches and multi-fidelity optimization is substantiated by demonstrating

quantified production benefits, including architectural efficiency gains that result in up to a 25% Query per Second

(QPS) increase and resource optimization that reduces embedding parameters by 50% to 95%. The holistic,

integrated system consistently achieves an end-to-end latency below the critical 100-millisecond threshold, providing

a robust, evidence-based blueprint for deploying adaptive, scalable ML solutions in high-stakes, time-constrained

production environments.

Keywords: Automated Machine Learning, AutoRecSys, Recommender Systems, Low Latency, Feature Store, Adaptive

Personalization, High-Traffic E-commerce, MLOps, Train/Serve Skew.

1. Introduction
1.1. The Critical Challenge of Scalability and Latency in

Digital Commerce

Digital commerce platforms operating at scale encounter

immense pressure during scheduled or sudden high-traffic

events, such as seasonal sales or flash promotions. These

applications experience unpredictable and massive surges in

demand, which necessitates a system architecture that is not

merely reactive but intrinsically predictive and resilient.

A fundamental challenge in modern e-commerce is

mitigating the impact of system latency. The time delay

between a shopper's action and the system's response is

directly correlated with customer satisfaction and conversion

rates. Industry analysis reveals a critical performance

benchmark: a delay of merely 100 milliseconds can translate

to a 1% loss in sales revenue. This established metric

underscores the operational imperative to maintain sub-

second response times across the entire personalization

pipeline. When response times degrade, customer frustration

increases, undermining trust and leading to lost purchases.

To maintain a smooth, trustworthy interaction flow, the

system must deliver instant recommendations and real-time

nudges, necessitating an ultra-low latency architecture

engineered for speed at scale.

Traditional autoscaling methods, which rely on reactive

rules (e.g., adding resources only after CPU usage exceeds a

threshold), are often insufficient. This reactive latency causes

performance degradation to occur before new resources can

be fully integrated, leading to service degradation and

revenue loss. Consequently, modern ML infrastructure must

move beyond static, reactive scaling to incorporate predictive

resource management and intrinsically efficient model

deployment that minimizes the time required to serve

personalized content.

1.2. Automated ML (AutoML) as the Driver for Adaptivity

and Efficiency

The adoption of machine learning has broadened

significantly, extending from foundational research into

mainstream production environments across diverse

industries. While ML offers considerable value, the

complexity of deploying and maintaining high-performance

models in production, especially deep recommender systems,

remains substantial. The machine learning workflow, such as

the CRISP-ML(Q) model, typically involves six phases,

including model engineering, evaluation, deployment, and

monitoring, necessitating continuous iteration. Data science

experts often need to revisit earlier stages due to complexity,

incurring significant time costs.

Udit Agarwal / IJAIBDCMS, 7(1), 39-44, 2026

40

Automated Machine Learning (AutoML) systems

simplify these labor-intensive tasks by automating

components such as data preprocessing, feature creation,

model selection, and hyperparameter tuning. The deployment

of next-wave AutoML frameworks, such as Auto-sklearn 2.0

and FLAML, has demonstrated the capacity to achieve

efficient and accurate solutions for large datasets under

severe time constraints, accelerating computation time from

hours to mere seconds on various benchmarks.

By automating the burdensome model engineering and

optimization phases, AutoML releases human engineering

resources. This capacity for accelerated, automated iteration

is critical during high-traffic shopping events where rapid

shifts in user behavior or data drift can quickly degrade

model performance. AutoML provides the mechanism for

near-instantaneous model recalibration or the efficient search

and deployment of optimized model architectures, ensuring

the system remains adaptive and high-performing when

traffic spikes are at their peak.

1.3. Paper Organization

The remainder of this paper is structured to define the

precise operational requirements for low-latency

performance, detail the application and quantitative benefits

of AutoRecSys in model optimization, and provide a

thorough architectural analysis of the ultra-low latency

MLOps feature pipeline required to support adaptive

personalization in production.

2. The Operational Imperative: Defining Low-

Latency Performance
2.1. Deconstructing End-to-End Latency in Real-Time

Systems

In e-commerce, latency is not merely a theoretical

metric but a direct measure of system reliability and user

experience. End-to-end latency in a personalization system

encapsulates several factors, including network transport,

front-end rendering, and the time required for the AI model

to generate a prediction (model inference).

To ensure a smooth, conversion-driving experience, the

overall system response must adhere to stringent latency

budgets. A production-ready architectural framework for

real-time autonomous decision-making establishes an

ambitious objective: the entire end-to-end latency must

remain consistently under 100 milliseconds (ms).

2.2. The Centralized Vulnerability and Distributed

Resilience

Designing systems for peak traffic requires addressing

bottlenecks associated with monolithic or centralized

architectures. Centralized systems inherently lack the

distributed resilience required to tolerate large traffic spikes.

Furthermore, a common architectural pitfall is co-locating

large data representations (such as item embeddings) with

the model serving infrastructure. This centralization leads to

severe memory pressure, introduces single-node bottlenecks,

and significantly degrades service reliability, particularly

during model warm-up or sudden increases in user demand.

The analysis confirms a critical causal chain:

Architectural centralization leads directly to excessive

memory and service pressure, resulting in degraded

reliability during unpredictable spikes. The engineering

solution is architectural decoupling. This requires separating

the high-volume data (features and representations) from the

compute layer (model serving). A dedicated, distributed

Feature Store is essential for handling high-throughput, ultra-

low latency data access independently of the model server,

thereby eliminating the single-node bottleneck and

supporting the required resilience.

2.3. Strategic Adaptive Personalization

Effective personalization is not a one-size-fits-all

solution; it requires matching the recommendation strategy

to the specific stage of the customer journey. A successful

three-stage personalization framework structures strategies

for different user states: Strategic Segmentation for

anonymous or new visitors (acquisition), Progressive

Identification for engaged browsers (consideration), and

Individual Personalization for known customers (retention).

This strategic requirement for adaptivity means that the

underlying ML infrastructure must be capable of rapidly

selecting, switching, or deploying different models optimized

for varying contexts. For example, a high-speed, simpler

model might be used for anonymous users, while a deep,

feature-rich model may be reserved for known, high-value

customers. This need for rapid, context-aware model

management underscores the importance of a highly efficient

model selection mechanism, a core function provided by

AutoRecSys.

3. Automated Machine Learning for Deep

Recommender Systems (AutoRecSys)
3.1. AutoRecSys: Specialized Automation for

Recommender Systems

Recommender systems play a critical role in filtering

information across digital platforms, including e-commerce.

Deep recommender systems offer superior performance by

capturing non-linear user-item relationships, but their design

historically relies heavily on human experience and expert

knowledge. Automated Machine Learning for Deep

Recommender Systems (AutoRecSys) is introduced to

automatically search for optimal candidates across the

system’s building blocks, alleviating reliance on manual

effort.

AutoRecSys differs from conventional AutoML

techniques because it places particular emphasis on the

optimization of the input component specifically the

embedding matrix. For deep recommender systems, the

embedding layer is a primary factor in memory consumption.

The efficient learning of features from raw data dramatically

influences all subsequent model components and is crucial to

the final performance of the system.

In high-traffic environments where computational

resources and serving costs are highly constrained, the

automation of input components (embedding dimension

Udit Agarwal / IJAIBDCMS, 7(1), 39-44, 2026

41

search) is paramount. If the embedding layer consumes

prohibitive memory, it limits the total number of concurrent

experiments that can be supported and strains the

architecture's capacity to serve large-capacity models

efficiently. AutoRecSys directly optimizes this memory and

compute trade-off, thereby fundamentally enabling scalable

deployment under high pressure.

3.2. Taxonomy of Search Spaces for Optimization

The AutoRecSys framework classifies its search

methodologies into five distinct categories, designed to target

optimization across the full spectrum of the deep learning

pipeline.

Table 1: Autorecsys Taxonomy and Production Efficiency Impact

Search Category Primary Focus Area Quantified Impact on Production/Efficiency

Feature Selection Search

(Auto-FSS)

Optimizing the input features

used by the model.

Reduces computational complexity and feature noise in

training.

Embedding Dimension

Search (Auto-EDS)

Determining optimal dimension

sizes for feature embeddings.

Reduces memory consumption and computation cost

Feature Interaction

Search (Auto-FIS)

Identifying beneficial feature

interactions within the model.

Enhances predictive accuracy by finding powerful non-linear

relationships.

Model Architecture

Search (Auto-MAS)

Automating the overall neural

network structure.

Enables the discovery of models with high Return on

Investment (ROI) and up to 25% Query per Second (QPS)

increase.

Specific search focuses provide clear operational

benefits. Auto-EDS addresses the common practice of using

uniform dimension sizes, which often leads to excessive

resource consumption and suboptimal representation.

Similarly, Auto-FIS mitigates noise and training complexity

that arises from calculating non-beneficial feature

interactions. Research has demonstrated that optimizing

embeddings using AutoML (AutoSrh) yields tangible

efficiency results, achieving better predictive performance

with lower training time cost while preserving model

performance and reducing embedding parameters.

This optimized resource utilization provides a dual

benefit: improving model accuracy while simultaneously

serving as a tool for cost and efficiency optimization.

Reducing the overall model size and training time cost

dramatically lowers infrastructure operational expenditure,

and critically, improves inference speed, helping the system

remain within the strict latency budget of 50 ms during peak

loads.

3.3. Production Efficiency through Sampling-Based

Optimization

The integration of AutoML into real-time production

ranking systems, such as those at Meta, demands extreme

efficiency. Due to the large scale of models and tight

production schedules, AutoML must surpass human-tuned

baselines using a small budget of model evaluation trials.

A sampling-based AutoML method addresses these

challenges by leveraging a lightweight predictor-based

searcher and reinforcement learning to explore the vast

neural architecture search space. This method has been

shown to achieve outstanding Return on Investment (ROI)

against human baselines. The results demonstrate

performance gains of up to 0.09% Normalized Entropy (NE)

loss reduction, or a significant 25% Query per Second

(QPS) increase, achieved by sampling only one hundred

candidate models on average.

The realized QPS increase is of particular significance.

This outcome proves that AutoML optimization is not solely

an academic pursuit of accuracy but rather a practical

mechanism for infrastructural scaling and capacity

enhancement. By improving model efficiency, the system

can handle a greater volume of requests with the same

resources, directly increasing resilience during high-traffic

peaks. This validation accelerates the adoption of AutoML in

high-stakes production ranking systems.

4. Ultra-Low Latency Feature Infrastructure

and MLOps
4.1. The Streaming Architecture for Real-Time Feature

Engineering

To support adaptive personalization, the MLOps

pipeline must transition from static batch data processing to

handling high-velocity, real-time data streams. Real-time

feature engineering is necessary to quickly cleanse,

aggregate, and enrich user click data, sensor readings, or

financial transactions on the fly.

Core streaming frameworks, such as Apache Kafka (for

ingestion), AWS Kinesis, and Apache Flink, are essential for

managing high-velocity data streams. Apache Flink is

noteworthy because it functions as an open-source system

capable of processing both streaming and batch data,

unifying diverse data processing use cases under a single,

fault-tolerant execution model.

The homogeneity afforded by Flink’s architecture is

crucial for MLOps consistency. It allows the identical

transformation logic, used to create crucial features, to be

consistently applied across both historical training data

(batch) and live inference events (stream). Utilizing

versioned feature definitions and supporting incremental

updates (maintaining rolling averages or counters reflecting

the latest events) provides the necessary defense against

feature inconsistencies and data drift. This architectural

Udit Agarwal / IJAIBDCMS, 7(1), 39-44, 2026

42

consistency is the first necessary step in minimizing

train/serve skew before the data reaches the serving layer.

4.2. The Enterprise Feature Store: Consistency and

Governance

Deploying real-time ML systems in production presents

significant challenges, including massive engineering

overhead, difficulties in scaling, and exorbitant costs

associated with managing complex data pipelines. The

Feature Store addresses these challenges by serving as a

centralized, scalable platform for managing and serving

features.

The Feature Store's primary architectural achievement is

the resolution of train/serve skew. This critical failure mode

occurs when subtle differences emerge between the features

used for offline model training and those used for online

inference, leading to a catastrophic decline in model

performance. The Feature Store mitigates this by providing a

unified serving layer. It ensures consistent data is available in

the offline environment (historical data, optimized for batch

retrieval in data lakes like Delta Lake) and the online

environment (latest feature values, optimized for ultra-low

latency lookup in high-speed stores like Redis).

Beyond consistency, the Feature Store reduces

engineering overhead by automating batch and streaming

data pipelines, enabling feature reuse across models and

eliminating the duplication of data engineering efforts.

Table 2: Feature Store Role in Mitigating Production Challenges

Challenge Feature Store Solution Key Benefit in High-Traffic E-commerce

Training/Serving

Skew

Consistent storage (Offline/Online stores)

and unified serving APIs.

Ensures reliable model performance under dynamic

load and maintains model calibration.

Massive Engineering

Overhead

Automated Batch/Streaming pipelines;

centralized management, feature reuse.

Reduces time spent creating bespoke, difficult-to-

scale pipelines; accelerates ML project velocity.

Data Quality &

Governance

Feature versioning, lineage tracking, and

monitoring capabilities.

Provides accountability and traceability, crucial for

debugging data quality issues during high-velocity

streams.

Low Latency Feature

Access

Feature Serving Layer optimized for low

latency and high throughput (e.g., using

Redis).

Supports the sub-100 ms prediction budget required

for real-time personalization.

The Feature Store is also vital for operational resilience

during critical traffic events. High-velocity streams are

vulnerable to data quality anomalies and potential corruption.

The Feature Store’s governance capabilities including data

lineage tracking, feature versioning, and

monitoring/observability features provide insights into

feature usage, performance, and data quality. This serves as

an essential safety layer; should performance degrade due to

a feature inconsistency introduced during a traffic spike, the

Feature Store provides the necessary clear audit trail and

rapid rollback mechanism, minimizing service disruption in

high-stakes environments.

4.3. Benchmark Performance: Meeting the Sub-100ms

Guarantee

To validate the architectural choices necessary for real-

time personalization, a detailed analysis of an ultra-low

latency data pipeline was conducted, integrating state-of-the-

art technical components.

Table 3: Ultra-Low Latency Pipeline Architecture and Performance Benchmarks

Pipeline Stage Core

Component(s)

ML Role / Function Target Latency (Lx) Achieved End-

to-End Latency

Data Ingestion Apache Kafka High-frequency data input

for real-time events.

< 20 ms 80 – 95 ms

Processing/Enrichment Apache Flink Real-time feature

transformation and

aggregation.

< 30 ms

Feature Retrieval Redis / Delta Lake Low-latency feature lookup

from online store.

Included in

Processing/Inference

Model Inference NVIDIA Triton

Inference Server

GPU-accelerated model

prediction serving.

< 50 ms

End-to-End Total

Latency

Total System

Architecture

Autonomous

Decision/Prediction Loop

Target < 100 ms 80 – 95 ms

The core stack integrating Apache Kafka for data

ingestion, Apache Flink for stream processing, Redis (a

common high-speed feature store component) and Delta

Lake for data storage, and the NVIDIA Triton Inference

Server for model serving was tested rigorously. The pipeline

consistently achieved end-to-end latency in the range of 80–

95 milliseconds.

This consistent performance validates that the

architecture selection is capable of meeting the critical sub-

Udit Agarwal / IJAIBDCMS, 7(1), 39-44, 2026

43

100 ms requirement for the total personalization loop,

covering ingestion, processing, feature lookup, and

inference.

5. Adaptive Model Updates and Continuous

Learning
5.1. Minimizing Data Staleness and Feature-Label

Mismatch

Adaptive personalization requires not only fast inference

but also features that are fresh and reflective of current user

context. A critical vulnerability is feature-label mismatch,

which results from the delayed propagation of updated

representations (e.g., changes in item descriptions or

popularity) into training or serving systems. This mismatch

can significantly undermine calibration and reduce model

effectiveness.

To maintain high-quality alignment between user

behavior signals and item semantics, the system must

aggressively minimize the end-to-end latency from content

change to the feature's availability at the serving layer. This

constraint confirms the critical role of streaming frameworks

that support incremental updates, ensuring that if a product

suddenly gains popularity during a flash sale, its

representation is instantly updated, avoiding the use of stale

features for subsequent recommendation requests. The

capability to maintain real-time alignment is essential for

continuous adaptation.

5.2. Multimodal Representation Learning for Enhanced

Adaptivity

Modern product understanding in e-commerce has

advanced beyond sparse, ID-based features to leverage rich

multimodal content, including visual images and textual

titles. These high-quality features are the foundation of

adaptive models.

The MOON architecture, which utilizes a Multimodal

Large Language Model (MLLM)-based method for product

representation learning, proposes a sophisticated three-stage

paradigm: “Pretraining, Post-training, and Application”. This

framework sequentially fulfills two learning objectives:

generative-model-based multimodal representation learning

and downstream user visual preference modeling.

Experimentally, this approach has demonstrated powerful

capability for multimodal product content understanding,

leading to an overall +20.00% improvement on Click-

Through Rate (CTR) prediction in online A/B tests.

The quantified performance improvement (+20% CTR)

validates the high reliance of adaptive ML models on the

freshness and accuracy of these complex multimodal

representations. This operational reality mandates that the

AutoRecSys pipeline, particularly through its Feature

Selection Search (Auto-FSS) mechanism, must be capable of

efficiently selecting, managing, and retrieving these complex

features while remaining strictly within the ultra-low latency

budget established in Table 2.

5.3. Meta-Learning for Dynamic Model Adaptation

Traditional learning methods, frequently relying on

classical algorithms like Stochastic Gradient Descent (SGD),

often lack the dynamic adaptability necessary to handle

rapidly changing data environments and diverse learning

tasks efficiently.

The next major step in adaptive personalization involves

integrating meta-learning (learning to learn) methods. Meta-

learning allows the model to autonomously adapt,

accelerating the continuous learning process. Research is

actively progressing in scaling AutoML through multi-

fidelity optimization, transfer learning, and the exploitation

of user priors. This direction suggests moving beyond fully

automated approaches toward a human-centered approach

that combines expert knowledge with efficient automation to

increase the efficiency of ML workflows.

This combined strategy provides the necessary

mechanisms for rapid adaptation to new trends or cold starts

that emerge instantly during peak shopping hours. The

capacity to quickly train models on sequential, live events

without requiring a full, disruptive retraining cycle is

essential for maintaining personalization efficacy when data

patterns change abruptly.

6. Conclusion
Adaptive personalization in high-traffic shopping events is

only sustainable through the disciplined and synergistic

integration of technological pillars. This report confirms that

resilient, high-throughput model delivery is predicated on the

convergence of three foundational components:

 Automated Machine Learning (AutoRecSys): Used

for proactive architectural optimization,

AutoRecSys enables significant efficiency gains,

including a documented 25% Query per Second

(QPS) increase in large-scale production ranking

systems. Furthermore, its ability to automate the

Embedding Dimension Search leads directly to

resource optimization and reduction in embedding

parameters. These gains reduce operational cost and

critically minimize the model size.

 Ultra-Low Latency Architecture: This requires a

streaming-first approach, utilizing resilient

frameworks such as Apache Kafka and Apache

Flink, combined with GPU-accelerated serving

(e.g., NVIDIA Triton). This stack has been

benchmarked to consistently deliver end-to-end

performance within the critical 80–95 millisecond

range.

 The Enterprise Feature Store: This platform

provides essential data consistency, acting as the

centralized source for feature governance, lineage,

and versioning. Its core function is the mitigation of

training/serving skew, which ensures model

reliability and accurate predictions under dynamic

and high-velocity load conditions.

Udit Agarwal / IJAIBDCMS, 7(1), 39-44, 2026

44

By automating the historically labor-intensive phases of

feature and model engineering, the integrated platform gains

the speed, scale, and flexibility necessary to react

instantaneously to rapid shifts in user behavior that define

peak shopping events. The architecture detailed here moves

ML deployment from a complex, manually intensive

operation to a high-throughput, automated, and continuously

adaptive system. This integrated framework is mandatory for

maintaining competitive relevance and maximizing revenue

potential in high-stakes, real-time digital commerce

environments.

References
1. P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S.

Haridi, and K. Tzoumas. (2015). Apache Flink™:

Stream and Batch Processing in a Single Engine.

Bulletin of the IEEE Computer Society Technical

Committee on Data Engineering, 36(4), 28–38.

2. R. Zheng, L. Qu, B. Cui, Y. Shi, and H. Yin. (2021).

AutoML for Deep Recommender Systems: A Survey.

ACM Transactions on Information Systems, 1, 1, Article

1.

3. J. Hu et al. (2023). AutoML for Large Capacity

Modeling of Meta's Ranking Systems. arXiv preprint

arXiv:2311.07870.

4. K. Stankeviciute, M. Alaa, A., & M. van der Schaar.

(2021). Conformal time-series forecasting. European

Journal of Operational Research, 314, 111–121. URL:

https://www.sciencedirect.com/science/article/pii/S0377

221723006859.

5. G. Li, S. Wu, and C. Xiao. (2024). MOON: Generative

MLLM-based Multimodal Representation Learning for

E-commerce Product Understanding. arXiv preprint

arXiv:2508.11999v2.

6. J. Smith. (2024). Designing Ultra-Low Latency Data

Pipelines to Power ML Models for Real-Time

Autonomous Decision Making. ResearchGate. URL:

https://www.researchgate.net/publication/395477469_D

esigning_Ultra-

Low_Latency_Data_Pipelines_to_Power_ML_Models_f

or_Real-_Time_Autonomous_Decision_Making.

7. F. Hutter et al. (2025). Automated Machine Learning

(AutoML) review. arXiv preprint arXiv:2505.18243v1.

8. D. Liu et al. (2025). Multimodal Representation

Learning Challenges and Solutions for E-commerce

Recommendation Systems. arXiv preprint

arXiv:2511.11305v2.

9. R. Zhang et al. (2025). Taxonomy of Challenges in

Metaverse Systems. arXiv preprint arXiv:2510.09621v1.

10. S. Li et al. (2024). Human-Centered AutoML: Goals,

Techniques, and Future Directions. arXiv preprint

arXiv:2406.03348v1.

11. M. Zhai et al. (2024). A Study on Ranking-Based Loss

Functions in Neural Architecture Search. arXiv preprint

arXiv:2506.05869.

12. H. Lee. (2024). Comparison of AutoML Libraries and

Recommendation Systems for E-commerce Tasks. arXiv

preprint arXiv:2402.04453.

13. L. Cheng-Ju et al. (2020). Machine learning-based e-

commerce platform repurchase customer prediction

model. Plos One, 15(12):e0243105.

14. M. W. El-Said, and M. I. Aly. (2024). Real-Time Data

Processing in E-Commerce: Concepts, Challenges, and

Cloud Solutions. International Journal of Advanced

Engineering Technologies and Innovations, 1(3), 298–

307.

15. B. H. M. S. Waseem, H. U. Zaman, F. H. Khan. (2022).

Real-Time Analytics: Concepts, Architectures, and

ML... IEEE Xplore.

16. P. A. Alagumalai et al. (2022). An efficient anomaly

detection and classification approach for rare events in

audio data. IEEE Xplore.

17. Y. Xu, B. Cai, M. Ding. (2023). A Comprehensive

Survey on Automated Machine Learning for

Recommendations. ResearchGate. DOI: 10.1007/978-

981-99-4328-9_13.

18. Hemish Prakashchandra Kapadia, Krunal Bharatbhai

Thakkar. (2024). AI based user behavior prediction for

web navigation, International Journal of Research and

Analytical Reviews - (IJRAR), 11(3), 397-405,

https://www.ijrar.org/papers/IJRAR24C2956.pdf

https://www.sciencedirect.com/science/article/pii/S0377221723006859
https://www.sciencedirect.com/science/article/pii/S0377221723006859
https://www.sciencedirect.com/science/article/pii/S0377221723006859
https://www.sciencedirect.com/science/article/pii/S0377221723006859
https://www.researchgate.net/publication/395477469_Designing_Ultra-Low_Latency_Data_Pipelines_to_Power_ML_Models_for_Real-_Time_Autonomous_Decision_Making
https://www.researchgate.net/publication/395477469_Designing_Ultra-Low_Latency_Data_Pipelines_to_Power_ML_Models_for_Real-_Time_Autonomous_Decision_Making
https://www.researchgate.net/publication/395477469_Designing_Ultra-Low_Latency_Data_Pipelines_to_Power_ML_Models_for_Real-_Time_Autonomous_Decision_Making
https://www.researchgate.net/publication/395477469_Designing_Ultra-Low_Latency_Data_Pipelines_to_Power_ML_Models_for_Real-_Time_Autonomous_Decision_Making
https://www.researchgate.net/publication/395477469_Designing_Ultra-Low_Latency_Data_Pipelines_to_Power_ML_Models_for_Real-_Time_Autonomous_Decision_Making
https://www.researchgate.net/publication/395477469_Designing_Ultra-Low_Latency_Data_Pipelines_to_Power_ML_Models_for_Real-_Time_Autonomous_Decision_Making
https://www.ijrar.org/papers/IJRAR24C2956.pdf

