* X %
* *
* § e * International Journal of Al, BigData, Computational and Management Studies
** N ** Noble Scholar Research Group | Volume 7, Issue 1, 32-38, 2026

A

ISSN: 3050-9416 | https://doi.org/10.63282/3050-9416.1JAIBDCMS-V711P105

Original Article

Multi-agent Security Framework for Al-Assisted
Software Development

Deepanjan Mukherjee
Independent Researcher, Austin, TX USA.

Received On: 24/11/2025 Revised On: 26/12/2025 Accepted On: 03/01/2026 Published On: 14/01/2026
Abstract: Al-enabled tools for code generation have drastically changed software development, but security holes in
the code created by Al are still significant. Several new studies show security vulnerabilities could increase by 37.6%
after five rounds of iterative software refinement using Al, with 19-50% of Al-generated code containing security
flaws. This paper describes a new multi-agent security framework that integrates security-first principles throughout
the Software Development Lifecycle (SDLC). The framework consists of seven specialized Al agents (Threat Modeling,
Security Design, Secure Code Generation, Security Testing, CI/CD Security, Runtime Security, and Compliance),
each of which handles a unique SDLC phase. The key differentiator of the innovation is a continuous security gate
mechanism of the Secure Code Generation Agent which helps in keeping security on track during the process of
coding via confidence scoring and automated safety checkpoints. It combines webhook-based trigger mechanisms
directly with current development tools like Jira, GitHub, Jenkins, SIEM and uses hybrid enforcement (rule-based
security tools — SAST, DAST, SCA) and LLM-based contextual analysis. The approach proposed strives for >90%
sensitivity for critical vulnerabilities and >85% specificity to minimize alert fatigue, with holistic metrics on detection
accuracy, performance, and operational effectiveness. This solution proactively addresses security at every SDLC
stage rather than reactively once deployed, allowing organizations to leverage Al-assisted development while

maintaining robust security posture and regulatory compliance.

Keywords: Multi-Agent Systems, Al Security, Devsecops, Software Development Lifecycle, Code Generation,

Vulnerability Detection, Shift-Left Security, Large Language Models, Iterative Security Refinement.

1. Introduction

The incorporation of Large Language Models (LLMs)
into the software development process has fundamentally
changed how code is written and is now in practice with over
80% of developers using Al and code assistants like GitHub
Copilot, ChatGPT, and Claude [1]. According to the CEO of
GitHub, Al is estimated to take care of 80% of code writing
soon [2]. Although these tools offer major productivity gains,
they pose serious security threats. At the empirical level,
approximately 40% of Al-generated programs contain
vulnerabilities [3], and particularly high levels of
vulnerability were observed in languages like C (50%) and
Python (39%) [3]. Even more worrying, recent research
found that critical vulnerabilities increased by 37.6% after
just five iterations of Al code refinement [4], which
contradicts the assumption that repeated LLM refinement
improves code security. The security problem isn't just about
writing code. Developers usually have feedback loops,
submitting the desired code to the Al for either upgrading,
fine tuning, or extending [4]. In the absence of proper
protections, these loops can paradoxically introduce new
vulnerabilities into secure-seeming code — called feedback
loop security degradation [4].

This dynamic does not lend itself easily to traditional
security mechanisms: DevSecOps tools used till now have
been created for human-written code, with no built-in logic

to stop Al-driven security decay. Static Application Security
Testing (SAST) and Dynamic Application Security Testing
(DAST) tools function as single point solutions, not
integrated systems, and are associated with alert fatigue, with
high override rates reported in security alert systems.
Contemporary multi-agent stacks for software engineering
such as MetaGPT [5], CrewAl, and AutoGen [6]
demonstrate the efficacy of purposeful Al agents working on
complex issues. However, such frameworks are not
specialized in security, and do not support the specific
requirements on securing Al-generated code during the
SDLC. Al-assisted development studies have centered
mainly around productivity metrics [7] or isolated security
analysis [8]. So far, no comprehensive framework combines
security prioritization from requirements down until
production monitoring. This paper introduces a multi-agent
security framework that fills in these gaps using three key
innovations:
e Seven dedicated security agents based on SDLC
phases, specializing in security within their domains.
e An iterative security gate mechanism that prevents
the documented 37.6% vulnerability increase during
code refinement.
e Seamless integration with existing development
tools through webhook-based triggers and
standardized communication protocols.

Deepanjan Mukherjee / IJAIBDCMS, 7(1), 32-38, 2026

Scoring of uncertain outputs to humans signals the
system to human security teams to validate them, also with a
human-in-the-loop safety net. The evaluation approach uses
the common security metrics that leverage sensitivity (>90%
for critical weaknesses), specificity (>85% to minimize false
positives), positive predictive value, and negative predictive
value, but that also includes operational metrics such as
Mean Time to Detect and Mean Time to Remediate.

By moving to a left-shifted security posture — security
considerations embedded from the initial planning stages
instead of later (post-deployment), this approach allows
organizations to take advantage of Al-assisted development
with the security posture and regulatory compliance in place.

2. Background
2.1. Security Challenges in Al-Generated Code

The security risks associated with Al-generated code
have been extensively documented. Pearce et al. [3]
performed one of the first empirical assessments of security,
focusing on GitHub Copilot, examining 1,689 programs and
finding approximately 40% with a vulnerability, a
particularly high rate of vulnerabilities observed in C code
(around 50%) when compared to the case of Python
(approximately 39%). Perry et al. [9] built further upon this
work by conducting user studies, indicating that developers
who made use of Al assistants were found to write much less
secure code, and to show a falsely significant sense of
security rating highly suspicious solutions as secure. The
iterative refinement paradox has been more recently realized
through research. A systematic examination of security
degradation in Al-generated code collected from 400 code
samples across 40 cycles of improvements with four unique
prompting strategies documented a 37.6% increase in critical
vulnerabilities within five iterations [4]. The counterintuitive
dynamic, that seemingly good code changes bring even more
security problems with it, suggests the criticality of human
knowledge in developing the loops as to how an end product
develops. LLM-based code security studies have shown
context-dependent vulnerability patterns, with CrowdStrike
authors finding that some LLMs produced code with up to
50% higher security vulnerabilities in the context of a
prompt with politically sensitive topics [10].

2.2. Multi-Agent Systems for Software Engineering
Multi-agent systems have become a popular paradigm
for software engineering tasks that are relatively complex in
nature. MetaGPT [5] proposed a multi-agent collaborative
framework where agents take various roles to jointly build
software from natural language queries. AutoGen [6]
facilitates conversational multi-agent systems where agents
can chat through natural conversation with autonomous
operation and human feedback. CrewAl focuses on role-
based orchestration, enabling developers to define the unique
agent roles that work in pipelines. But these architectures are
generic and do not contain the infrastructure knowledge,
tools, or workflows needed to secure Al generated code.
Autonomy and a broader context of tasks emerged as key
features in existing literature for software engineering agent-

33

based LLM in recent surveys, but there is a lack of security-
focused agent frameworks [11].

2.3. DevSecOps and Security Automation

DevSecOps embeds security in the software
development lifecycle, as security measures are used from
planning to deployment for the full software lifecycle.
Traditional DevSecOps tools include SAST to analyze
source code, DAST for testing on-the-fly applications,
Software Composition Analysis to find dependency
vulnerabilities, and container scanning for image protection.
Yet, these tools are frequently stand-alone; they are manual
and repetitive and generate copious alerts which leads to
alert fatigue. Al-based DevSecOps offers an evolution of the
concept, leveraging machine learning in anomaly detection,
automated vulnerability scanning, and predictive modeling
[12]. Recent white papers have introduced Al/ML-driven
fully autonomous CI/CD pipelines in support of real-time,
security-focused deployments as code commits, builds, tests,
and deployments. However, these methods mostly target
pipeline automation as opposed to addressing the challenge
of Al-generated code security, namely the iterative
degradation problem.

2.4. Threat Modeling and Requirements Security

Threat modeling tools (STRIDE, PASTA, OCTAVE)
are for early security detection methods. More recently,
specialized frameworks for Al systems were presented,
among which is PLOT4AI, which covers 138 threats based
on Al at the 8 domains leading up to the end of the Al
lifecycle [13]. Studies of requirements engineering for Al
systems have reported on best practices but indicated that
systematically obtaining security requirements is problematic
[14]. IriusRisk and other similar tools automate the task of
threat model creation in design phases, while JPMorgan
Chase’s Al Threat Modeling Co-Pilot shows on-the-ground
application to help engineers model threats earlier and more
effectively [15]. These advances notwithstanding, existing
approaches are still isolated from one another, and do not
form part of a continuous security framework covering the
entirety of the SDLC rather than standing alone and
operating separate tasks.

3. System Architecture

This approach suggests a three-layer architecture with an
Integration & Tools Layer, an Agent Orchestration Layer,
and a User Experience Layer. The architecture leverages
existing development infrastructure for easy integration
along with dedicated security agents for each SDLC phase.
The framework is predicated on five critical aspects: agent
specialization by SDLC stage, hierarchical orchestration via
meta-agent, hybrid approach that blends rule-based and LLM
based tools, human-in-the-loop escalation through
confidence scoring, and continuous learning from human
corrections and security incidents.

Deepanjan Mukherjee / IJAIBDCMS, 7(1), 32-38, 2026

Multi-Agent Security Framework for Al-Assisted SDLC

Security Orchestrator Agent

Development
Requirements Design (Secure Cade Testing clco Production
(Threat Mcdeling (SecurityDesign ~ Genera tion Agent) (SecurityTesting (CV/CD Security (Runtime Security
Agent) Agent) Agent) Agent) Agent)

‘ ITERATIVE
SECURITY
GATES y
(Core Innovation)

Human-in-the-Loop
(Confidence Scoring Escalation)

Hybrid Approach

Shift-Left Security
(LM + Rule-Based) s

(Proactive & Continuous)

Fig 1: System Design and Architecture of Multi-Agent
Security Framework

3.1. Security Orchestrator Agent (Agent 0)

The meta-agent manages specialized agents. It gets
webhooks from development tools to receive the events,
decides which of the agents are to call based on SDLC stage,
sends messages back and forth between agents based on
Model Context Protocol, gathers the confidence score to
make overall security decisions. If the confidence scores go
under 0.7, the orchestrator can escalate to the human review
queue with explanation of why. It keeps the Shared Security
Knowledge Base that stores threat models, vulnerability data,
and compliance requirements accessible to every agent.

3.2. Threat Modeling Agent (Agent 1)

This task is carried out by using STRIDE, PLOT4AlI,
and PASTA methodologies to analyze requirements
documents and user stories to create threat models. Agent 1
analyzes user and requirements reports of use cases and
threat detection materials before conducting threat modeling.
It establishes trust boundaries, attack surfaces, and data flows,
producing security user stories including acceptance criteria.
The agent combines Retrieval-Augmented Generation and
existing threat intelligence databases (e.g., MITRE
ATT&CK [16], CVE) to identify and base analysis upon
known attack patterns. It generates risk-rated threat
inventories in severity categories along with compliance
mappings to HIPAA, GDPR, SOC2, PCI-DSS. Confidence
scoring combines coverage completeness (0.4 weight), threat
database match quality (0.3), and LLM certainty (0.3).

3.3. Security Design Agent (Agent 2)

Agent 2 compares proposed architectures with threat
models from Agent 1. Security controls are verified as
solutions addressing issues raised at trust boundaries. It
recommends secure design patterns that include OAuth2,
mTLS, and zero-trust architectures and identifies anti-
patterns that include hardcoded credentials, over-permissive
access controls, and unencrypted storage of sensitive
information. The agent creates APl security features:
authentication, authorization, rate limiting, and input
validation. RAG (Retrieval-Augmented Generation) using
secure design pattern databases (OWASP, CWE Top 25,
NIST) assures that recommendations adhere to industry
practices. Confidence scoring on features weighs controls
adequacy (0.4), quality of pattern match (0.3), and LLM
certainty (0.3).

34

3.4. Secure Code Generation Agent (Agent 3)

Agent 3 represents the framework's core innovation,
generating code with embedded security requirements and
iterative changes for security degradation. It works with
multi-provider LLM based orchestration with Claude Sonnet
4 as primary, fallback to GPT-40, and smaller specialized
models for specific tasks. Security requirements are fed into
the generation prompts through RAG that include secure
coding guidelines (OWASP Secure Coding Practices, SANS
Top 25, CWE). The agent analyzes real-time SAST using
SonarQube and computes security scores after each round.
The iterative security gate mechanism restricts refinements
to just 5 iterations with degradation detection between
rounds. Confidence scoring integrates SAST clean score
(0.4), LLM security analysis (0.3), and iteration safety trend
(0.3). The iterative gate algorithm is described in detail in
Section V.

3.5. Security Testing Agent (Agent 4)

Agent 4 creates security test cases with threat models,
automates penetration testing, and confirms that security
controls execute as intended. It is responsible for bringing
together DAST tools (OWASP ZAP, Burp Suite), fuzzing
tools (SQLMap for SQL injection, XSSer for cross-site
scripting), and API security testing frameworks (Postman,
REST Assured). The agent provides validation of
exploitability of wvulnerabilities found through proof-of-
concept exploits to confirm that findings are real risks versus
false positives. Test results are prioritized based on severity,
exploitability, and business impact. Test coverage (0.4),
exploit validation (0.3), and historical false positive rate (0.3)
constitute confidence scoring.

3.6. CI/CD Security Agent (Agent 5)

Agent 5 administers security measures in deployment
pipelines, by scanning containers (Trivy, Snyk, Aqua),
determining dependencies using Software Composition
Analysis (OWASP Dependency-Check, Dependabot),
scanning Infrastructure-as-Code (Checkov, Terrascan, tfsec),
and discovering secrets (GitGuardian, TruffleHog). It uses
Open Policy Agent or Kyverno to enforce Policy-as-Code,
blocking deployments when critical vulnerabilities are found
and passing high-severity results to the security engineers.
The agent automatically generates compliance evidence
artifacts for each deployment which aligns with SOC2, 1SO
27001, and other audit needs. Security gate decisions come
in several tiers: every passing check allows deployment;
critical failure prevents deployment and triggers PO (priority
0) incident response. High findings will enable deployment
(with warnings). Confidence scoring considers gate passing
rate (0.5), vulnerability severity (0.3), and historical incident
rate (0.2).

3.7. Runtime Security Agent (Agent 6)

The agent continuously monitors security in production
environments and inspects application logs, access logs, and
security events from event management systems (Splunk,
ELK Stack, Azure Sentinel). Machine learning models
identify anomalies, such as failed login spikes, unusual data
access patterns, and lateral movement attempts. When

Deepanjan Mukherjee / IJAIBDCMS, 7(1), 32-38, 2026

incidents are found with high confidence (>0.8) and critical
severity, the agent automatically executes response
playbooks such as isolating compromised instances, rotating
credentials, and blocking malicious IP addresses. Importantly,
incident learnings feedback to Agent 1, an internal feedback
loop designed to ensure production threats drive future threat
model iteration. Confidence scoring combines detection
accuracy (0.4), historical true positive rate (0.3), and LLM
contextual analysis (0.3).

3.8. Compliance & Audit Agent (Agent 7)

Being a cross-cutting concern across all SDLC stages,
Agent 7 monitors compliance status continuously. It maps
security controls that other agents apply back to requirements
of regulatory frameworks (HIPAA, GDPR, SOC2, PCI-DSS,
ISO 27001) and automatically collects audit evidence from
artifacts created throughout the SDLC. The agent offers
regulatory guidance to other agents for meeting regulatory
requirements in executing security procedures. It provides
real-time compliance dashboards reporting control coverage,
evidence quality, and remediation priority, enabling
organizations to remain audit ready. Confidence scoring uses
controls coverage (0.4), evidence quality (0.3), and LLM
regulatory interpretation (0.3).

4. SDLC Integration

This approach uses webhook-based triggers and API
integrations to connect with existing development workflows.
Webhooks trigger Agent 1 when Product Managers create
epics in Jira or upload requirements to Confluence,
generating threat models and auto-creating security stories.
Engineers committing architecture diagrams to GitHub
trigger Agent 2 through webhooks, which posts security
recommendations as Pull request comments and blocks
merges for critical findings. Agent 3 also integrates with IDE
extensions (VS Code, IntelliJ) for instant security alerts as
developers begin to work, as well as Git pre-commit hooks
for further validations before commit. Pull requests activate
Agent 4 in GitHub Actions workflows by executing DAST
against staging environments, which also post test results as
PR comments with pass/fail status checks.

Code merged to the main branches triggers Agent 5
directly in CI/CD pipelines (e.g., Jenkins, GitHub Actions)
and runs parallel security scans: secrets scanning, SCA,
container scanning, and laC scanning. The agent makes
security gate decisions (pass, block, escalate) and auto-
generates compliance evidence. Application logs in
production stream to event management systems where
Agent 6 continuously monitors anomalies. For high-
confidence critical incidents, automated response playbooks
are executed via SOAR (Security Orchestration, Automation,
and Response) platforms. Agent 7 operates throughout the
entire process, with the shared event bus consuming events,
mapping them to compliance frameworks, and keeping real-
time dashboards of SOC2, HIPAA, and 1SO 27001 readiness
status.

35

5. Iterative Security Gates

The Secure Code Generation Agent (Agent 3)
instantiates the core innovation of the framework where
iterative security gate mechanisms block the documented
37.6% increase in vulnerability associated with Al code in
the process of refinement [4]. This fills an essential void that
iterative LLM interactions with little safeguards
inadvertently add a new flaw to already secure code.

ITERATIVE SECURITY GATES

"\, HYBRID ANALYSIS ENGINE
(Static Analysis + LLM-based Reasaning)
against Security Policy & Threat Model

€3 conE ceneraTION
(Secure Code Generation Agent)

RE-ENTER CYCLE
(Repeats untl clean
or threshold not met)

[
GATE CHECK

(Security Gate
Decision Point)

PASS
(All Checks Passed)

FAIL
(Vulnerabilities Found) .
M= HUMAN INTERVENTION
________ > (Developer Raview Raquired)
Threshaold Met

Fig 2: Flow Diagram of Secure Code Generation Agent
with Iterative Security Gates

as

-\ REFINE & REMEDIATE

(Agent automatically attempts to
generate a fix)

5.1. The Iterative Degradation Problem

A study looking at 400 code samples on 40 rounds of
Al-based system improvement found that critical
vulnerabilities rose by 37.6% simply with five iterations [4].
This is because, when LLMs are told to make code better,
they could create new patterns in what their attempts are to
optimize, reformat, or add functionality that could cause
security holes. Without verification loops on the security
posture across iterations, degradation is never detected
before you move code into production. Traditional
development presumes that human developers will remain
aware of security across modifications; LLMs are simply
missing the persistent security context and will generate
vulnerable patterns when fine-tuning for other goals
performance, readability, or otherwise. Research has shown
that the use of Al assistants leads to developers having a
false sense of confidence in these automated solutions and
rating these Al-generated solutions as secure [9], amplifying
the risk.

5.2. Iterative Security Gate Algorithm

The algorithm starts when a developer asks to generate code,
along with a prompt and security requirements from Agent 2.
Agent 3 starts an iteration loop with 5 iterations max,
weighing the improvement opportunity against risk of
degradation. Four steps are followed in each iteration:

LLM Code Generation: The LLM prompt is fed
secure coding guidelines by RAG; security
requirements are embedded into the LLM prompt
alongside secure coding (OWASP Secure Coding
Practices, SANS Top 25, CWE). Security-aware
prompts are used by the LLM to generate code.
Security Analysis: SAST apps like SonarQube look
at the generated code. The LLM does the contextual

Deepanjan Mukherjee / IJAIBDCMS, 7(1), 32-38, 2026

security inspection, getting into business logic and
catching things that SAST tools don’t pick up on. A
security score (0-1 scale) is calculated using:
security_score (sast_clean_score x 0.4) +
(Ilm_security_analysis x 0.3) +
(iteration_safety_trend x 0.3).

o Degradation Check: For iterations > 1, the agent
compares current security_score to the previous
iteration. If security_score < previous_score,
degradation is logged. If security score < 0.5 (low
confidence), immediate escalation to human
security team occurs with explanation of
degradation.

e Confidence Decision: If security_score > 0.7, pass
code and return to developers. If 0.5 <
security_score < 0.7, design the remediation prompt
with SAST findings and LLM recommendations
together for next iteration. If security_score < 0.5,
report to the human security team. If maximum
iterations (5) are reached without achieving
security_score > 0.7, escalation happens with
message 'Max iterations exceeded.'

5.3. Confidence Assessment Items

The sast_clean_score describes severity of the SAST
result: 1.0 is no findings, and critical findings lower the score
to 0.0, high to 0.3, medium to 0.6, low to 0.8. The
lIm_security_analysis component is the LLM's evaluation of
the context of the system security, analyzing code for
authorization bypass vulnerabilities, insecure data handling
patterns, cryptographic weaknesses, and race conditions,
generating both numerical score (0-1) and textual
explanation. For the iteration_safety trend, we measure
whether the security is improving or degrading for a given
iteration: this defaults to a value of 0.5, neutral value for the
first iteration; for subsequent iterations, the rate of change
(current_score - previous_score) is normalized to 0-1 range,
where improving security gives better scores than 0.5, while
degrading security gives lower than 0.5.

5.4. Avoid the 37.6% Increase

The framework directly addresses the documented
increase in vulnerabilities by introducing security
checkpoints between iterations. This degradation check
guarantees immediate attention to any decrement, reducing
the security posture. The maximum iteration limits prevent
unbridled iteration that can exacerbate vulnerabilities. The
confidence scoring integrates automated tool findings
(SAST) with contextual understanding (LLM), to enable
extensive security analysis. Early estimates indicate that this
method has potential to decrease the risk of vulnerability
introduction rate during iterations of refinement by between
60 and 80% over unconstrained LLM interaction, but these
estimates need to be validated empirically through the
evaluation methodology presented in Section V1.

6. Proposed Evaluation
A robust evaluation framework enables the examination
of detection accuracy, system performance, and operational

36

impact of this approach, confirming its effectiveness. The
evaluation uses controlled testing of the proposed framework
against baseline DevSecOps tools using real-world
codebases from GitHub having known vulnerabilities
(OWASP Benchmark, Juliet Test Suite) and synthetic code
generated by various LLMs with and without security
prompts.

Detection accuracy metrics are derived from standard
vulnerability detection research methods using sensitivity,
specificity, positive predictive value (PPV), and negative
predictive value (NPV), comprising true positives, true
negatives, false positives, and false negatives. The objective
metrics are sensitivity > 90% for critical vulnerabilities (SQL
injection, remote code execution, authentication bypass),
sensitivity > 85% for high-severity vulnerabilities (XSS,
CSRF), and specificity > 85% in all cases, the goal being a
limit on false positives producing alert fatigue.

Standard detection metrics are calculated as follows:
Sensitivity = TP /(TP + FN)
Specificity =TN / (TN + FP)
PPV =TP /(TP + FP)
NPV =TN /(TN + FN)

Where TP = true positives (vulnerabilities correctly
detected), TN true negatives (safe code correctly
identified), FP false positives (safe code flagged as
vulnerable), and FN false negatives (vulnerabilities
missed).

The goal is to balance the developer speed with
performance (running a real-time system, for instance,
checks (IDE integration, pre-commit hooks) that have a
speed target of < 500ms p95 latency, full pipeline security
analysis of < 5 minutes p95 latency and a throughput of over
100 requests/second of sustained load, 100+ requests/sec
burst capacity to 1000+ requests/sec etc. Operational KPIs
that determine its focus would be Mean Time to Detect < 1
hour; Mean Time to Remediate < 4 hours for all critical
vulnerabilities and false positives < 15% and reduction in
security debt 30% -50% within 6 months.

A large part of the critical evaluation element analyses
whether code produced using an iterative security gate and
without an iterative security gate is better or worse. To
generate code with same prompt and requirement, the code is
generated using two channels — our proposed framework,
with a fully built-in iterative gate mechanism and a minimal
LLM generation baseline allowing 5 iterations without
security checkpoints. Blind security auditors do manual
reviews, manually validating the correctness of the results of
vulnerability counts and severity distributions to directly
verify whether iterative gates prevent a documented 37.6%
vulnerability increase.

7. Discussion

The introduction of this framework allows us to
overcome existing gaps within security practices by covering
all aspects of SDLCs, thus moving security left to identify

Deepanjan Mukherjee / IJAIBDCMS, 7(1), 32-38, 2026

and prevent vulnerabilities as early as possible where they
should be caught and remediation costs minimized. The
iterative security gate mechanism in the application
addresses a documented decline in security of Al-generated
code, which is not found in popular code generation tools
(e.g., GitHub Copilot, ChatGPT). Security specialization sets
the proposal apart from generic multi-agent frameworks that
don't have domain-specific security experience, integrate
tools, or optimize prompting security.

The hybrid of rule-based tools and LLM reasoning
builds both: rule-based tools deliver deterministic, auditable
output, while LLMs provide context and natural language
explanations. These can involve considerations like the
technical stack used (LangGraph to manage complex states,
CrewAl to orchestrate simpler threads), which kind of LLM
provider is selected (Claude Sonnet 4/GPT-40 for more
complex reasoning models, smaller models for specific
tasks), as well as scalability requirements. Cost-analysis
should consider LLM API costs [17][18] totaling about
$164,000 a year for an enterprise managing 10,000 code
generation requests daily, although stopping one (often
serious) breach (typically costing $4.35M) [19] would put up
significant return on investment.

Limitations are needed to establish the quality standards
of LLMs with hallucinations or errors that could limit the
efficiency of security testing, false positive/negative trade-
offs that require fine tuning threshold settings, integration
requirements requiring the existing DevSecOps maturity [20],
development & security teams having to learn up to the
software usually taking 3-6 months to build, and context-
limiting analysis of very large codebases over 100,000 lines.

This framework offers significant value to regulated
sectors (such as healthcare or finance) that need evidence of
demonstrable security in place, with applicability varying
between startup contexts where it establishes security
practices early versus enterprise environments where it
augments existing security teams and processes. Possible
future improvements might involve domain-sensitive fine-
tuning for industry verticals, federated learning providing an
opportunity for organizations to exchange security insights
without publicizing sensitive code, integrating SBOM
(Software Bill of Materials) to secure supply chains, growing
beyond web/API development efforts into mobile and loT
technology or securing Al supply chains to prevent the
model from falling into a security pit.

8. Conclusion and Future Work

This paper introduces a new, multi-agent security
framework for Al-assisted development. Its three major
strengths are that it comprises seven specialized security
agents spanning the entire SDLC, performs an iterative
security gate mechanism to prevent documented
vulnerabilities from rising with code updates, and seamlessly
integrates with existing development tools. With a model
that mowves security to the left and makes security an
integrated consideration from requirements through
production monitoring, security becomes more than just a

37

reactive constraint and will act as a proactive engine of
development velocity.

The hybrid approach integrating rule-based security
tools with LLM-powered contextual analysis not only
utilizes the benefits of both approaches but also reduces each
other’s weaknesses. The confidence score and human-in-the-
loop protocol for escalation are built to balance automation
benefits with safety concerns to address concerns of applying
Al in security-critical settings. The proposed evaluation
framework ensures a high level of assessment aiming for >
90% sensitivity of critical vulnerabilities and > 85%
specificity for reduction of alert fatigue.

Future research includes domain-specific fine-tuning of
agents (healthcare agents for nuances of HIPAA, fintech
agents optimized for PCI-DSS), federated learning to allow
firms to share security expertise without revealing sensitive
code, integration with SBOM generation and analysis for
more secure supply chain, extending beyond web and API
development to mobile, embedded systems and IoT devices,
and an Al supply chain security investigation to ensure that
Al models themselves are not compromised and not making
the deliberate generation of vulnerable code.

References

1. J. Becker, N. Rush, E. Barnes, and D. Rein, “Measuring
the Impact of Early-2025 Al on Experienced Open-
Source Developer Productivity,” arXiv.org, 2025.
https://arxiv.org/abs/2507.09089

“GitHub CEO says Copilot will write 80% of code
‘sooner than later,”” Freethink, Jun. 17, 2023.
https://www.freethink.com/robots-ai/github-copilot
“Examining Zero-Shot Vulnerability Repair with Large
Language Models | IEEE Conference Publication | IEEE
Xplore,” ieeexplore.ieee.org.
https://ieeexplore.ieee.org/abstract/document/10179324
“Peer-reviewed and accepted in IEEE-ISTAS 2025
Security Degradation in Iterative Al Code Generation: A
Systematic Analysis of the Paradox,” Arxiv.org, 2025.
https://arxiv.org/html/2506.11022

S. Hong et al., “MetaGPT: Meta Programming for
Multi-Agent Collaborative Framework,” arXiv.org, Aug.
07, 2023. https://arxiv.org/abs/2308.00352

Q. Wu et al, “AutoGen: Enabling Next-Gen LLM
Applications via Multi-Agent Conversation,” arXiv.org,
Oct. 03, 2023. https://arxiv.org/abs/2308.08155
“Measuring the Impact of Early-2025 Al on
Experienced Open-Source Developer Productivity,”
METR Blog, 2025. https://metr.org/blog/2025-07-10-
early-2025-ai-experienced-os-dev-study/

Z. Li, S. Dutta, and M. Naik, “LLM-Assisted Static
Analysis for Detecting Security Vulnerabilities,”
arXiv.org, 2024. https://arxiv.org/abs/2405.17238

N. Perry, M. Srivastava, D. Kumar, and D. Boneh, “Do
Users Write More Insecure Code with Al Assistants?,”
arXiv (Cornell University), Nov. 2022, doi:
https://doi.org/10.1145/3576915.3623157

S. Stein, “CrowdStrike Researchers Identify Hidden
Vulnerabilities in Al-Coded Software,”

10.

https://arxiv.org/abs/2507.09089
https://www.freethink.com/robots-ai/github-copilot
https://ieeexplore.ieee.org/abstract/document/10179324
https://arxiv.org/html/2506.11022
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2308.08155
https://metr.org/blog/2025-07-10-early-2025-ai-experienced-os-dev-study/
https://metr.org/blog/2025-07-10-early-2025-ai-experienced-os-dev-study/
https://arxiv.org/abs/2405.17238
https://doi.org/10.1145/3576915.3623157

11.

12.

13.

14.

15.

Deepanjan Mukherjee / IJAIBDCMS, 7(1), 32-38, 2026

Crowdstrike.com, 2025.
https://www.crowdstrike.com/en-us/blog/crowdstrike-
researchers-identify-hidden-vulnerabilities-ai-coded-
software/

Y. Dong et al., “A Survey on Code Generation with

LLM-based Agents,” Arxiv.org, 2025.
https://arxiv.org/html/2508.00083v1

“The Evolution of DevSecOps with Al | CSA,”
Cloudsecurityalliance.org, 2024.

https://cloudsecurityalliance.org/blog/2024/11/22/the-
evolution-of-devsecops-with-ai

“PLOT4ai - Privacy Library Of Threats 4 Artificial
Intelligence,” plot4.ai. https://plot4.ai/

Umme-e- Habiba, M. Haug, J. Bogner, and S. Wagner,
“How mature is requirements engineering for Al-based
systems? A systematic mapping study on practices,
challenges, and future research directions,”
Requirements Engineering, Oct. 2024, doi:
https://doi.org/10.1007/s00766-024-00432-3

J. P. Morgan, “Revolutionizing Threat Modeling with
Al: The Threat Modeling Co-Pilot,”

38

16.

17.

18.

19.

20.

Jpmorganchase.com, Oct. 03, 2025.
https://www.jpmorganchase.com/about/technology/blog/
aitmc

B. Strom, A. Applebaum, D. Miller, K. Nickels, A.
Pennington, and C. Thomas, “MITRE ATT&CK®:
Design and Philosophy,” Jul. 2018. Available:
https://www.mitre.org/sites/default/files/2021-11/prs-19-
01075-28-mitre-attack-design-and-philosophy.pdf

“Pricing,” www.anthropic.com.
https://www.anthropic.com/pricing
OpenAl, “API Pricing,” OpenAl, 2025.

https://openai.com/api/pricing/

IBM, “IBM Report: Consumers Pay the Price as Data
Breach Costs Reach All-Time High,” IBM Newsroom,
Jul. 27, 2022. https://newsroom.ibm.com/2022-07-27-
IBM-Report-Consumers-Pay-the-Price-as-Data-Breach-
Costs-Reach-All-Time-High

“OWASP Top 10 CI/CD Security Risks | OWASP
Foundation,” owasp.org. https://owasp.org/www-
project-top-10-ci-cd-security-risks/

https://www.crowdstrike.com/en-us/blog/crowdstrike-researchers-identify-hidden-vulnerabilities-ai-coded-software/
https://www.crowdstrike.com/en-us/blog/crowdstrike-researchers-identify-hidden-vulnerabilities-ai-coded-software/
https://www.crowdstrike.com/en-us/blog/crowdstrike-researchers-identify-hidden-vulnerabilities-ai-coded-software/
https://arxiv.org/html/2508.00083v1
https://cloudsecurityalliance.org/blog/2024/11/22/the-evolution-of-devsecops-with-ai
https://cloudsecurityalliance.org/blog/2024/11/22/the-evolution-of-devsecops-with-ai
https://plot4.ai/
https://doi.org/10.1007/s00766-024-00432-3
https://www.jpmorganchase.com/about/technology/blog/aitmc
https://www.jpmorganchase.com/about/technology/blog/aitmc
https://www.mitre.org/sites/default/files/2021-11/prs-19-01075-28-mitre-attack-design-and-philosophy.pdf
https://www.mitre.org/sites/default/files/2021-11/prs-19-01075-28-mitre-attack-design-and-philosophy.pdf
https://www.anthropic.com/pricing
https://openai.com/api/pricing/
https://newsroom.ibm.com/2022-07-27-IBM-Report-Consumers-Pay-the-Price-as-Data-Breach-Costs-Reach-All-Time-High
https://newsroom.ibm.com/2022-07-27-IBM-Report-Consumers-Pay-the-Price-as-Data-Breach-Costs-Reach-All-Time-High
https://newsroom.ibm.com/2022-07-27-IBM-Report-Consumers-Pay-the-Price-as-Data-Breach-Costs-Reach-All-Time-High
https://owasp.org/www-project-top-10-ci-cd-security-risks/
https://owasp.org/www-project-top-10-ci-cd-security-risks/

