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Abstract: AI-enabled tools for code generation have drastically changed software development, but security holes in 

the code created by AI are still significant. Several new studies show security vulnerabilities could increase by 37.6% 

after five rounds of iterative software refinement using AI, with 19-50% of AI-generated code containing security 

flaws. This paper describes a new multi-agent security framework that integrates security-first principles throughout 

the Software Development Lifecycle (SDLC). The framework consists of seven specialized AI agents (Threat Modeling, 

Security Design, Secure Code Generation, Security Testing, CI/CD Security, Runtime Security, and Compliance), 

each of which handles a unique SDLC phase. The key differentiator of the innovation is a continuous security gate 

mechanism of the Secure Code Generation Agent which helps in keeping security on track during the process of 

coding via confidence scoring and automated safety checkpoints. It combines webhook-based trigger mechanisms 

directly with current development tools like Jira, GitHub, Jenkins, SIEM and uses hybrid enforcement (rule-based 

security tools – SAST, DAST, SCA) and LLM-based contextual analysis. The approach proposed strives for >90% 

sensitivity for critical vulnerabilities and >85% specificity to minimize alert fatigue, with holistic metrics on detection 

accuracy, performance, and operational effectiveness. This solution proactively addresses security at every SDLC 

stage rather than reactively once deployed, allowing organizations to leverage AI-assisted development while 

maintaining robust security posture and regulatory compliance. 

 

Keywords: Multi-Agent Systems, AI Security, Devsecops, Software Development Lifecycle, Code Generation, 

Vulnerability Detection, Shift-Left Security, Large Language Models, Iterative Security Refinement. 

 

1. Introduction 
The incorporation of Large Language Models (LLMs) 

into the software development process has fundamentally 

changed how code is written and is now in practice with over 

80% of developers using AI and code assistants like GitHub 

Copilot, ChatGPT, and Claude [1]. According to the CEO of 

GitHub, AI is estimated to take care of 80% of code writing 

soon [2]. Although these tools offer major productivity gains, 

they pose serious security threats. At the empirical level, 

approximately 40% of AI-generated programs contain 

vulnerabilities [3], and particularly high levels of 

vulnerability were observed in languages like C (50%) and 

Python (39%) [3]. Even more worrying, recent research 

found that critical vulnerabilities increased by 37.6% after 

just five iterations of AI code refinement [4], which 

contradicts the assumption that repeated LLM refinement 

improves code security. The security problem isn't just about 

writing code. Developers usually have feedback loops, 

submitting the desired code to the AI for either upgrading, 

fine tuning, or extending [4]. In the absence of proper 

protections, these loops can paradoxically introduce new 

vulnerabilities into secure-seeming code – called feedback 

loop security degradation [4].  

 

This dynamic does not lend itself easily to traditional 

security mechanisms: DevSecOps tools used till now have 

been created for human-written code, with no built-in logic 

to stop AI-driven security decay. Static Application Security 

Testing (SAST) and Dynamic Application Security Testing 

(DAST) tools function as single point solutions, not 

integrated systems, and are associated with alert fatigue, with 

high override rates reported in security alert systems. 

Contemporary multi-agent stacks for software engineering 

such as MetaGPT [5], CrewAI, and AutoGen [6] 

demonstrate the efficacy of purposeful AI agents working on 

complex issues. However, such frameworks are not 

specialized in security, and do not support the specific 

requirements on securing AI-generated code during the 

SDLC. AI-assisted development studies have centered 

mainly around productivity metrics [7] or isolated security 

analysis [8]. So far, no comprehensive framework combines 

security prioritization from requirements down until 

production monitoring. This paper introduces a multi-agent 

security framework that fills in these gaps using three key 

innovations: 

 Seven dedicated security agents based on SDLC 

phases, specializing in security within their domains. 

 An iterative security gate mechanism that prevents 

the documented 37.6% vulnerability increase during 

code refinement. 

 Seamless integration with existing development 

tools through webhook-based triggers and 

standardized communication protocols. 
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Scoring of uncertain outputs to humans signals the 

system to human security teams to validate them, also with a 

human-in-the-loop safety net. The evaluation approach uses 

the common security metrics that leverage sensitivity (>90% 

for critical weaknesses), specificity (>85% to minimize false 

positives), positive predictive value, and negative predictive 

value, but that also includes operational metrics such as 

Mean Time to Detect and Mean Time to Remediate. 

 

By moving to a left-shifted security posture – security 

considerations embedded from the initial planning stages 

instead of later (post-deployment), this approach allows 

organizations to take advantage of AI-assisted development 

with the security posture and regulatory compliance in place. 

 

2. Background 
2.1. Security Challenges in AI-Generated Code 

The security risks associated with AI-generated code 

have been extensively documented. Pearce et al. [3] 

performed one of the first empirical assessments of security, 

focusing on GitHub Copilot, examining 1,689 programs and 

finding approximately 40% with a vulnerability, a 

particularly high rate of vulnerabilities observed in C code 

(around 50%) when compared to the case of Python 

(approximately 39%). Perry et al. [9] built further upon this 

work by conducting user studies, indicating that developers 

who made use of AI assistants were found to write much less 

secure code, and to show a falsely significant sense of 

security rating highly suspicious solutions as secure. The 

iterative refinement paradox has been more recently realized 

through research. A systematic examination of security 

degradation in AI-generated code collected from 400 code 

samples across 40 cycles of improvements with four unique 

prompting strategies documented a 37.6% increase in critical 

vulnerabilities within five iterations [4]. The counterintuitive 

dynamic, that seemingly good code changes bring even more 

security problems with it, suggests the criticality of human 

knowledge in developing the loops as to how an end product 

develops. LLM-based code security studies have shown 

context-dependent vulnerability patterns, with CrowdStrike 

authors finding that some LLMs produced code with up to 

50% higher security vulnerabilities in the context of a 

prompt with politically sensitive topics [10]. 

 

2.2. Multi-Agent Systems for Software Engineering 

Multi-agent systems have become a popular paradigm 

for software engineering tasks that are relatively complex in 

nature. MetaGPT [5] proposed a multi-agent collaborative 

framework where agents take various roles to jointly build 

software from natural language queries. AutoGen [6] 

facilitates conversational multi-agent systems where agents 

can chat through natural conversation with autonomous 

operation and human feedback. CrewAI focuses on role-

based orchestration, enabling developers to define the unique 

agent roles that work in pipelines. But these architectures are 

generic and do not contain the infrastructure knowledge, 

tools, or workflows needed to secure AI generated code. 

Autonomy and a broader context of tasks emerged as key 

features in existing literature for software engineering agent-

based LLM in recent surveys, but there is a lack of security-

focused agent frameworks [11]. 

 

2.3. DevSecOps and Security Automation 

DevSecOps embeds security in the software 

development lifecycle, as security measures are used from 

planning to deployment for the full software lifecycle. 

Traditional DevSecOps tools include SAST to analyze 

source code, DAST for testing on-the-fly applications, 

Software Composition Analysis to find dependency 

vulnerabilities, and container scanning for image protection. 

Yet, these tools are frequently stand-alone; they are manual 

and repetitive and generate copious alerts which leads to 

alert fatigue. AI-based DevSecOps offers an evolution of the 

concept, leveraging machine learning in anomaly detection, 

automated vulnerability scanning, and predictive modeling 

[12]. Recent white papers have introduced AI/ML-driven 

fully autonomous CI/CD pipelines in support of real-time, 

security-focused deployments as code commits, builds, tests, 

and deployments. However, these methods mostly target 

pipeline automation as opposed to addressing the challenge 

of AI-generated code security, namely the iterative 

degradation problem. 

 

2.4. Threat Modeling and Requirements Security 

Threat modeling tools (STRIDE, PASTA, OCTAVE) 

are for early security detection methods. More recently, 

specialized frameworks for AI systems were presented, 

among which is PLOT4AI, which covers 138 threats based 

on AI at the 8 domains leading up to the end of the AI 

lifecycle [13]. Studies of requirements engineering for AI 

systems have reported on best practices but indicated that 

systematically obtaining security requirements is problematic 

[14]. IriusRisk and other similar tools automate the task of 

threat model creation in design phases, while JPMorgan 

Chase‟s AI Threat Modeling Co-Pilot shows on-the-ground 

application to help engineers model threats earlier and more 

effectively [15]. These advances notwithstanding, existing 

approaches are still isolated from one another, and do not 

form part of a continuous security framework covering the 

entirety of the SDLC rather than standing alone and 

operating separate tasks. 

 

3. System Architecture 
This approach suggests a three-layer architecture with an 

Integration & Tools Layer, an Agent Orchestration Layer, 

and a User Experience Layer. The architecture leverages 

existing development infrastructure for easy integration 

along with dedicated security agents for each SDLC phase. 

The framework is predicated on five critical aspects: agent 

specialization by SDLC stage, hierarchical orchestration via 

meta-agent, hybrid approach that blends rule-based and LLM 

based tools, human-in-the-loop escalation through 

confidence scoring, and continuous learning from human 

corrections and security incidents. 
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Fig 1: System Design and Architecture of Multi-Agent 

Security Framework 

 

3.1. Security Orchestrator Agent (Agent 0) 

The meta-agent manages specialized agents. It gets 

webhooks from development tools to receive the events, 

decides which of the agents are to call based on SDLC stage, 

sends messages back and forth between agents based on 

Model Context Protocol, gathers the confidence score to 

make overall security decisions. If the confidence scores go 

under 0.7, the orchestrator can escalate to the human review 

queue with explanation of why. It keeps the Shared Security 

Knowledge Base that stores threat models, vulnerability data, 

and compliance requirements accessible to every agent. 

 

3.2. Threat Modeling Agent (Agent 1) 

This task is carried out by using STRIDE, PLOT4AI, 

and PASTA methodologies to analyze requirements 

documents and user stories to create threat models. Agent 1 

analyzes user and requirements reports of use cases and 

threat detection materials before conducting threat modeling. 

It establishes trust boundaries, attack surfaces, and data flows, 

producing security user stories including acceptance criteria. 

The agent combines Retrieval-Augmented Generation and 

existing threat intelligence databases (e.g., MITRE 

ATT&CK [16], CVE) to identify and base analysis upon 

known attack patterns. It generates risk-rated threat 

inventories in severity categories along with compliance 

mappings to HIPAA, GDPR, SOC2, PCI-DSS. Confidence 

scoring combines coverage completeness (0.4 weight), threat 

database match quality (0.3), and LLM certainty (0.3). 

 

3.3. Security Design Agent (Agent 2) 

Agent 2 compares proposed architectures with threat 

models from Agent 1. Security controls are verified as 

solutions addressing issues raised at trust boundaries. It 

recommends secure design patterns that include OAuth2, 

mTLS, and zero-trust architectures and identifies anti-

patterns that include hardcoded credentials, over-permissive 

access controls, and unencrypted storage of sensitive 

information. The agent creates API security features: 

authentication, authorization, rate limiting, and input 

validation. RAG (Retrieval-Augmented Generation) using 

secure design pattern databases (OWASP, CWE Top 25, 

NIST) assures that recommendations adhere to industry 

practices. Confidence scoring on features weighs controls 

adequacy (0.4), quality of pattern match (0.3), and LLM 

certainty (0.3). 

 

3.4. Secure Code Generation Agent (Agent 3) 

Agent 3 represents the framework's core innovation, 

generating code with embedded security requirements and 

iterative changes for security degradation. It works with 

multi-provider LLM based orchestration with Claude Sonnet 

4 as primary, fallback to GPT-4o, and smaller specialized 

models for specific tasks. Security requirements are fed into 

the generation prompts through RAG that include secure 

coding guidelines (OWASP Secure Coding Practices, SANS 

Top 25, CWE). The agent analyzes real-time SAST using 

SonarQube and computes security scores after each round. 

The iterative security gate mechanism restricts refinements 

to just 5 iterations with degradation detection between 

rounds. Confidence scoring integrates SAST clean score 

(0.4), LLM security analysis (0.3), and iteration safety trend 

(0.3). The iterative gate algorithm is described in detail in 

Section V. 

 

3.5. Security Testing Agent (Agent 4) 

Agent 4 creates security test cases with threat models, 

automates penetration testing, and confirms that security 

controls execute as intended. It is responsible for bringing 

together DAST tools (OWASP ZAP, Burp Suite), fuzzing 

tools (SQLMap for SQL injection, XSSer for cross-site 

scripting), and API security testing frameworks (Postman, 

REST Assured). The agent provides validation of 

exploitability of vulnerabilities found through proof-of-

concept exploits to confirm that findings are real risks versus 

false positives. Test results are prioritized based on severity, 

exploitability, and business impact. Test coverage (0.4), 

exploit validation (0.3), and historical false positive rate (0.3) 

constitute confidence scoring. 

 

3.6. CI/CD Security Agent (Agent 5) 

Agent 5 administers security measures in deployment 

pipelines, by scanning containers (Trivy, Snyk, Aqua), 

determining dependencies using Software Composition 

Analysis (OWASP Dependency-Check, Dependabot), 

scanning Infrastructure-as-Code (Checkov, Terrascan, tfsec), 

and discovering secrets (GitGuardian, TruffleHog). It uses 

Open Policy Agent or Kyverno to enforce Policy-as-Code, 

blocking deployments when critical vulnerabilities are found 

and passing high-severity results to the security engineers. 

The agent automatically generates compliance evidence 

artifacts for each deployment which aligns with SOC2, ISO 

27001, and other audit needs. Security gate decisions come 

in several tiers: every passing check allows deployment; 

critical failure prevents deployment and triggers P0 (priority 

0) incident response. High findings will enable deployment 

(with warnings). Confidence scoring considers gate passing 

rate (0.5), vulnerability severity (0.3), and historical incident 

rate (0.2). 

 

3.7. Runtime Security Agent (Agent 6) 

The agent continuously monitors security in production 

environments and inspects application logs, access logs, and 

security events from event management systems (Splunk, 

ELK Stack, Azure Sentinel). Machine learning models 

identify anomalies, such as failed login spikes, unusual data 

access patterns, and lateral movement attempts. When 
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incidents are found with high confidence (>0.8) and critical 

severity, the agent automatically executes response 

playbooks such as isolating compromised instances, rotating 

credentials, and blocking malicious IP addresses. Importantly, 

incident learnings feedback to Agent 1, an internal feedback 

loop designed to ensure production threats drive future threat 

model iteration. Confidence scoring combines detection 

accuracy (0.4), historical true positive rate (0.3), and LLM 

contextual analysis (0.3). 

 

3.8. Compliance & Audit Agent (Agent 7) 

Being a cross-cutting concern across all SDLC stages, 

Agent 7 monitors compliance status continuously. It maps 

security controls that other agents apply back to requirements 

of regulatory frameworks (HIPAA, GDPR, SOC2, PCI-DSS, 

ISO 27001) and automatically collects audit evidence from 

artifacts created throughout the SDLC. The agent offers 

regulatory guidance to other agents for meeting regulatory 

requirements in executing security procedures. It provides 

real-time compliance dashboards reporting control coverage, 

evidence quality, and remediation priority, enabling 

organizations to remain audit ready. Confidence scoring uses 

controls coverage (0.4), evidence quality (0.3), and LLM 

regulatory interpretation (0.3). 

 

4. SDLC Integration 
This approach uses webhook-based triggers and API 

integrations to connect with existing development workflows. 

Webhooks trigger Agent 1 when Product Managers create 

epics in Jira or upload requirements to Confluence, 

generating threat models and auto-creating security stories. 

Engineers committing architecture diagrams to GitHub 

trigger Agent 2 through webhooks, which posts security 

recommendations as Pull request comments and blocks 

merges for critical findings. Agent 3 also integrates with IDE 

extensions (VS Code, IntelliJ) for instant security alerts as 

developers begin to work, as well as Git pre-commit hooks 

for further validations before commit. Pull requests activate 

Agent 4 in GitHub Actions workflows by executing DAST 

against staging environments, which also post test results as 

PR comments with pass/fail status checks.  

 

Code merged to the main branches triggers Agent 5 

directly in CI/CD pipelines (e.g., Jenkins, GitHub Actions) 

and runs parallel security scans: secrets scanning, SCA, 

container scanning, and IaC scanning. The agent makes 

security gate decisions (pass, block, escalate) and auto-

generates compliance evidence. Application logs in 

production stream to event management systems where 

Agent 6 continuously monitors anomalies. For high-

confidence critical incidents, automated response playbooks 

are executed via SOAR (Security Orchestration, Automation, 

and Response) platforms. Agent 7 operates throughout the 

entire process, with the shared event bus consuming events, 

mapping them to compliance frameworks, and keeping real-

time dashboards of SOC2, HIPAA, and ISO 27001 readiness 

status. 

 

 

5. Iterative Security Gates 
The Secure Code Generation Agent (Agent 3) 

instantiates the core innovation of the framework where 

iterative security gate mechanisms block the documented 

37.6% increase in vulnerability associated with AI code in 

the process of refinement [4]. This fills an essential void that 

iterative LLM interactions with little safeguards 

inadvertently add a new flaw to already secure code. 

 

 
Fig 2: Flow Diagram of Secure Code Generation Agent 

with Iterative Security Gates 

 

5.1. The Iterative Degradation Problem  

A study looking at 400 code samples on 40 rounds of 

AI-based system improvement found that critical 

vulnerabilities rose by 37.6% simply with five iterations [4]. 

This is because, when LLMs are told to make code better, 

they could create new patterns in what their attempts are to 

optimize, reformat, or add functionality that could cause 

security holes. Without verification loops on the security 

posture across iterations, degradation is never detected 

before you move code into production. Traditional 

development presumes that human developers will remain 

aware of security across modifications; LLMs are simply 

missing the persistent security context and will generate 

vulnerable patterns when fine-tuning for other goals 

performance, readability, or otherwise. Research has shown 

that the use of AI assistants leads to developers having a 

false sense of confidence in these automated solutions and 

rating these AI-generated solutions as secure [9], amplifying 

the risk. 

 

5.2. Iterative Security Gate Algorithm 

The algorithm starts when a developer asks to generate code, 

along with a prompt and security requirements from Agent 2. 

Agent 3 starts an iteration loop with 5 iterations max, 

weighing the improvement opportunity against risk of 

degradation. Four steps are followed in each iteration: 

 LLM Code Generation: The LLM prompt is fed 

secure coding guidelines by RAG; security 

requirements are embedded into the LLM prompt 

alongside secure coding (OWASP Secure Coding 

Practices, SANS Top 25, CWE). Security-aware 

prompts are used by the LLM to generate code. 

 Security Analysis: SAST apps like SonarQube look 

at the generated code. The LLM does the contextual 
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security inspection, getting into business logic and 

catching things that SAST tools don‟t pick up on. A 

security score (0-1 scale) is calculated using: 

security_score = (sast_clean_score × 0.4) + 

(llm_security_analysis × 0.3) + 

(iteration_safety_trend × 0.3). 

 Degradation Check: For iterations > 1, the agent 

compares current security_score to the previous 

iteration. If security_score < previous_score, 

degradation is logged. If security_score < 0.5 (low 

confidence), immediate escalation to human 

security team occurs with explanation of 

degradation. 

 Confidence Decision: If security_score ≥ 0.7, pass 

code and return to developers. If 0.5 ≤ 

security_score < 0.7, design the remediation prompt 

with SAST findings and LLM recommendations 

together for next iteration. If security_score < 0.5, 

report to the human security team. If maximum 

iterations (5) are reached without achieving 

security_score ≥ 0.7, escalation happens with 

message 'Max iterations exceeded.' 

 

5.3. Confidence Assessment Items 

The sast_clean_score describes severity of the SAST 

result: 1.0 is no findings, and critical findings lower the score 

to 0.0, high to 0.3, medium to 0.6, low to 0.8. The 

llm_security_analysis component is the LLM's evaluation of 

the context of the system security, analyzing code for 

authorization bypass vulnerabilities, insecure data handling 

patterns, cryptographic weaknesses, and race conditions, 

generating both numerical score (0-1) and textual 

explanation. For the iteration_safety_trend, we measure 

whether the security is improving or degrading for a given 

iteration: this defaults to a value of 0.5, neutral value for the 

first iteration; for subsequent iterations, the rate of change 

(current_score - previous_score) is normalized to 0–1 range, 

where improving security gives better scores than 0.5, while 

degrading security gives lower than 0.5. 

 

5.4. Avoid the 37.6% Increase 

The framework directly addresses the documented 

increase in vulnerabilities by introducing security 

checkpoints between iterations. This degradation check 

guarantees immediate attention to any decrement, reducing 

the security posture. The maximum iteration limits prevent 

unbridled iteration that can exacerbate vulnerabilities. The 

confidence scoring integrates automated tool findings 

(SAST) with contextual understanding (LLM), to enable 

extensive security analysis. Early estimates indicate that this 

method has potential to decrease the risk of vulnerability 

introduction rate during iterations of refinement by between 

60 and 80% over unconstrained LLM interaction, but these 

estimates need to be validated empirically through the 

evaluation methodology presented in Section VI. 

 

6. Proposed Evaluation 
A robust evaluation framework enables the examination 

of detection accuracy, system performance, and operational 

impact of this approach, confirming its effectiveness. The 

evaluation uses controlled testing of the proposed framework 

against baseline DevSecOps tools using real-world 

codebases from GitHub having known vulnerabilities 

(OWASP Benchmark, Juliet Test Suite) and synthetic code 

generated by various LLMs with and without security 

prompts. 

 

Detection accuracy metrics are derived from standard 

vulnerability detection research methods using sensitivity, 

specificity, positive predictive value (PPV), and negative 

predictive value (NPV), comprising true positives, true 

negatives, false positives, and false negatives. The objective 

metrics are sensitivity > 90% for critical vulnerabilities (SQL 

injection, remote code execution, authentication bypass), 

sensitivity > 85% for high-severity vulnerabilities (XSS, 

CSRF), and specificity > 85% in all cases, the goal being a 

limit on false positives producing alert fatigue. 

 

Standard detection metrics are calculated as follows: 

                   (       ) 
                 (     ) 

         (     ) 
         (     ) 

 

Where TP = true positives (vulnerabilities correctly 

detected), TN = true negatives (safe code correctly 

identified), FP = false positives (safe code flagged as 

vulnerable), and FN = false negatives (vulnerabilities 

missed). 

 

The goal is to balance the developer speed with 

performance (running a real-time system, for instance, 

checks (IDE integration, pre-commit hooks) that have a 

speed target of < 500ms p95 latency, full pipeline security 

analysis of < 5 minutes p95 latency and a throughput of over 

100 requests/second of sustained load, 100+ requests/sec 

burst capacity to 1000+ requests/sec etc. Operational KPIs 

that determine its focus would be Mean Time to Detect < 1 

hour; Mean Time to Remediate < 4 hours for all critical 

vulnerabilities and false positives < 15% and reduction in 

security debt 30% -50% within 6 months.  

 

A large part of the critical evaluation element analyses 

whether code produced using an iterative security gate and 

without an iterative security gate is better or worse. To 

generate code with same prompt and requirement, the code is 

generated using two channels – our proposed framework, 

with a fully built-in iterative gate mechanism and a minimal 

LLM generation baseline allowing 5 iterations without 

security checkpoints. Blind security auditors do manual 

reviews, manually validating the correctness of the results of 

vulnerability counts and severity distributions to directly 

verify whether iterative gates prevent a documented 37.6% 

vulnerability increase. 

 

7. Discussion 
The introduction of this framework allows us to 

overcome existing gaps within security practices by covering 

all aspects of SDLCs, thus moving security left to identify 
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and prevent vulnerabilities as early as possible where they 

should be caught and remediation costs minimized. The 

iterative security gate mechanism in the application 

addresses a documented decline in security of AI-generated 

code, which is not found in popular code generation tools 

(e.g., GitHub Copilot, ChatGPT). Security specialization sets 

the proposal apart from generic multi-agent frameworks that 

don't have domain-specific security experience, integrate 

tools, or optimize prompting security.  

 

The hybrid of rule-based tools and LLM reasoning 

builds both: rule-based tools deliver deterministic, auditable 

output, while LLMs provide context and natural language 

explanations. These can involve considerations like the 

technical stack used (LangGraph to manage complex states, 

CrewAI to orchestrate simpler threads), which kind of LLM 

provider is selected (Claude Sonnet 4/GPT-4o for more 

complex reasoning models, smaller models for specific 

tasks), as well as scalability requirements. Cost-analysis 

should consider LLM API costs [17][18] totaling about 

$164,000 a year for an enterprise managing 10,000 code 

generation requests daily, although stopping one (often 

serious) breach (typically costing $4.35M) [19] would put up 

significant return on investment.  

 

Limitations are needed to establish the quality standards 

of LLMs with hallucinations or errors that could limit the 

efficiency of security testing, false positive/negative trade-

offs that require fine tuning threshold settings, integration 

requirements requiring the existing DevSecOps maturity [20], 

development & security teams having to learn up to the 

software usually taking 3-6 months to build, and context-

limiting analysis of very large codebases over 100,000 lines.  

 

This framework offers significant value to regulated 

sectors (such as healthcare or finance) that need evidence of 

demonstrable security in place, with applicability varying 

between startup contexts where it establishes security 

practices early versus enterprise environments where it 

augments existing security teams and processes. Possible 

future improvements might involve domain-sensitive fine-

tuning for industry verticals, federated learning providing an 

opportunity for organizations to exchange security insights 

without publicizing sensitive code, integrating SBOM 

(Software Bill of Materials) to secure supply chains, growing 

beyond web/API development efforts into mobile and IoT 

technology or securing AI supply chains to prevent the 

model from falling into a security pit. 

 

8. Conclusion and Future Work 
This paper introduces a new, multi-agent security 

framework for AI-assisted development. Its three major 

strengths are that it comprises seven specialized security 

agents spanning the entire SDLC, performs an iterative 

security gate mechanism to prevent documented 

vulnerabilities from rising with code updates, and seamlessly 

integrates with existing development tools. With a model 

that moves security to the left and makes security an 

integrated consideration from requirements through 

production monitoring, security becomes more than just a 

reactive constraint and will act as a proactive engine of 

development velocity.  

 

The hybrid approach integrating rule-based security 

tools with LLM-powered contextual analysis not only 

utilizes the benefits of both approaches but also reduces each 

other‟s weaknesses. The confidence score and human-in-the-

loop protocol for escalation are built to balance automation 

benefits with safety concerns to address concerns of applying 

AI in security-critical settings. The proposed evaluation 

framework ensures a high level of assessment aiming for > 

90% sensitivity of critical vulnerabilities and > 85% 

specificity for reduction of alert fatigue.  

 

Future research includes domain-specific fine-tuning of 

agents (healthcare agents for nuances of HIPAA, fintech 

agents optimized for PCI-DSS), federated learning to allow 

firms to share security expertise without revealing sensitive 

code, integration with SBOM generation and analysis for 

more secure supply chain, extending beyond web and API 

development to mobile, embedded systems and IoT devices, 

and an AI supply chain security investigation to ensure that 

AI models themselves are not compromised and not making 

the deliberate generation of vulnerable code. 
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