
International Journal of AI, BigData, Computational and Management Studies

Noble Scholar Research Group | Volume 7, Issue 1, 32-38, 2026

ISSN: 3050-9416 | https://doi.org/10.63282/3050-9416.IJAIBDCMS-V7I1P105

Original Article

A Multi-agent Security Framework for AI-Assisted

Software Development

Deepanjan Mukherjee

Independent Researcher, Austin, TX USA.

Received On: 24/11/2025 Revised On: 26/12/2025 Accepted On: 03/01/2026 Published On: 14/01/2026

Abstract: AI-enabled tools for code generation have drastically changed software development, but security holes in

the code created by AI are still significant. Several new studies show security vulnerabilities could increase by 37.6%

after five rounds of iterative software refinement using AI, with 19-50% of AI-generated code containing security

flaws. This paper describes a new multi-agent security framework that integrates security-first principles throughout

the Software Development Lifecycle (SDLC). The framework consists of seven specialized AI agents (Threat Modeling,

Security Design, Secure Code Generation, Security Testing, CI/CD Security, Runtime Security, and Compliance),

each of which handles a unique SDLC phase. The key differentiator of the innovation is a continuous security gate

mechanism of the Secure Code Generation Agent which helps in keeping security on track during the process of

coding via confidence scoring and automated safety checkpoints. It combines webhook-based trigger mechanisms

directly with current development tools like Jira, GitHub, Jenkins, SIEM and uses hybrid enforcement (rule-based

security tools – SAST, DAST, SCA) and LLM-based contextual analysis. The approach proposed strives for >90%

sensitivity for critical vulnerabilities and >85% specificity to minimize alert fatigue, with holistic metrics on detection

accuracy, performance, and operational effectiveness. This solution proactively addresses security at every SDLC

stage rather than reactively once deployed, allowing organizations to leverage AI-assisted development while

maintaining robust security posture and regulatory compliance.

Keywords: Multi-Agent Systems, AI Security, Devsecops, Software Development Lifecycle, Code Generation,

Vulnerability Detection, Shift-Left Security, Large Language Models, Iterative Security Refinement.

1. Introduction
The incorporation of Large Language Models (LLMs)

into the software development process has fundamentally

changed how code is written and is now in practice with over

80% of developers using AI and code assistants like GitHub

Copilot, ChatGPT, and Claude [1]. According to the CEO of

GitHub, AI is estimated to take care of 80% of code writing

soon [2]. Although these tools offer major productivity gains,

they pose serious security threats. At the empirical level,

approximately 40% of AI-generated programs contain

vulnerabilities [3], and particularly high levels of

vulnerability were observed in languages like C (50%) and

Python (39%) [3]. Even more worrying, recent research

found that critical vulnerabilities increased by 37.6% after

just five iterations of AI code refinement [4], which

contradicts the assumption that repeated LLM refinement

improves code security. The security problem isn't just about

writing code. Developers usually have feedback loops,

submitting the desired code to the AI for either upgrading,

fine tuning, or extending [4]. In the absence of proper

protections, these loops can paradoxically introduce new

vulnerabilities into secure-seeming code – called feedback

loop security degradation [4].

This dynamic does not lend itself easily to traditional

security mechanisms: DevSecOps tools used till now have

been created for human-written code, with no built-in logic

to stop AI-driven security decay. Static Application Security

Testing (SAST) and Dynamic Application Security Testing

(DAST) tools function as single point solutions, not

integrated systems, and are associated with alert fatigue, with

high override rates reported in security alert systems.

Contemporary multi-agent stacks for software engineering

such as MetaGPT [5], CrewAI, and AutoGen [6]

demonstrate the efficacy of purposeful AI agents working on

complex issues. However, such frameworks are not

specialized in security, and do not support the specific

requirements on securing AI-generated code during the

SDLC. AI-assisted development studies have centered

mainly around productivity metrics [7] or isolated security

analysis [8]. So far, no comprehensive framework combines

security prioritization from requirements down until

production monitoring. This paper introduces a multi-agent

security framework that fills in these gaps using three key

innovations:

 Seven dedicated security agents based on SDLC

phases, specializing in security within their domains.

 An iterative security gate mechanism that prevents

the documented 37.6% vulnerability increase during

code refinement.

 Seamless integration with existing development

tools through webhook-based triggers and

standardized communication protocols.

Deepanjan Mukherjee / IJAIBDCMS, 7(1), 32-38, 2026

33

Scoring of uncertain outputs to humans signals the

system to human security teams to validate them, also with a

human-in-the-loop safety net. The evaluation approach uses

the common security metrics that leverage sensitivity (>90%

for critical weaknesses), specificity (>85% to minimize false

positives), positive predictive value, and negative predictive

value, but that also includes operational metrics such as

Mean Time to Detect and Mean Time to Remediate.

By moving to a left-shifted security posture – security

considerations embedded from the initial planning stages

instead of later (post-deployment), this approach allows

organizations to take advantage of AI-assisted development

with the security posture and regulatory compliance in place.

2. Background
2.1. Security Challenges in AI-Generated Code

The security risks associated with AI-generated code

have been extensively documented. Pearce et al. [3]

performed one of the first empirical assessments of security,

focusing on GitHub Copilot, examining 1,689 programs and

finding approximately 40% with a vulnerability, a

particularly high rate of vulnerabilities observed in C code

(around 50%) when compared to the case of Python

(approximately 39%). Perry et al. [9] built further upon this

work by conducting user studies, indicating that developers

who made use of AI assistants were found to write much less

secure code, and to show a falsely significant sense of

security rating highly suspicious solutions as secure. The

iterative refinement paradox has been more recently realized

through research. A systematic examination of security

degradation in AI-generated code collected from 400 code

samples across 40 cycles of improvements with four unique

prompting strategies documented a 37.6% increase in critical

vulnerabilities within five iterations [4]. The counterintuitive

dynamic, that seemingly good code changes bring even more

security problems with it, suggests the criticality of human

knowledge in developing the loops as to how an end product

develops. LLM-based code security studies have shown

context-dependent vulnerability patterns, with CrowdStrike

authors finding that some LLMs produced code with up to

50% higher security vulnerabilities in the context of a

prompt with politically sensitive topics [10].

2.2. Multi-Agent Systems for Software Engineering

Multi-agent systems have become a popular paradigm

for software engineering tasks that are relatively complex in

nature. MetaGPT [5] proposed a multi-agent collaborative

framework where agents take various roles to jointly build

software from natural language queries. AutoGen [6]

facilitates conversational multi-agent systems where agents

can chat through natural conversation with autonomous

operation and human feedback. CrewAI focuses on role-

based orchestration, enabling developers to define the unique

agent roles that work in pipelines. But these architectures are

generic and do not contain the infrastructure knowledge,

tools, or workflows needed to secure AI generated code.

Autonomy and a broader context of tasks emerged as key

features in existing literature for software engineering agent-

based LLM in recent surveys, but there is a lack of security-

focused agent frameworks [11].

2.3. DevSecOps and Security Automation

DevSecOps embeds security in the software

development lifecycle, as security measures are used from

planning to deployment for the full software lifecycle.

Traditional DevSecOps tools include SAST to analyze

source code, DAST for testing on-the-fly applications,

Software Composition Analysis to find dependency

vulnerabilities, and container scanning for image protection.

Yet, these tools are frequently stand-alone; they are manual

and repetitive and generate copious alerts which leads to

alert fatigue. AI-based DevSecOps offers an evolution of the

concept, leveraging machine learning in anomaly detection,

automated vulnerability scanning, and predictive modeling

[12]. Recent white papers have introduced AI/ML-driven

fully autonomous CI/CD pipelines in support of real-time,

security-focused deployments as code commits, builds, tests,

and deployments. However, these methods mostly target

pipeline automation as opposed to addressing the challenge

of AI-generated code security, namely the iterative

degradation problem.

2.4. Threat Modeling and Requirements Security

Threat modeling tools (STRIDE, PASTA, OCTAVE)

are for early security detection methods. More recently,

specialized frameworks for AI systems were presented,

among which is PLOT4AI, which covers 138 threats based

on AI at the 8 domains leading up to the end of the AI

lifecycle [13]. Studies of requirements engineering for AI

systems have reported on best practices but indicated that

systematically obtaining security requirements is problematic

[14]. IriusRisk and other similar tools automate the task of

threat model creation in design phases, while JPMorgan

Chase‟s AI Threat Modeling Co-Pilot shows on-the-ground

application to help engineers model threats earlier and more

effectively [15]. These advances notwithstanding, existing

approaches are still isolated from one another, and do not

form part of a continuous security framework covering the

entirety of the SDLC rather than standing alone and

operating separate tasks.

3. System Architecture
This approach suggests a three-layer architecture with an

Integration & Tools Layer, an Agent Orchestration Layer,

and a User Experience Layer. The architecture leverages

existing development infrastructure for easy integration

along with dedicated security agents for each SDLC phase.

The framework is predicated on five critical aspects: agent

specialization by SDLC stage, hierarchical orchestration via

meta-agent, hybrid approach that blends rule-based and LLM

based tools, human-in-the-loop escalation through

confidence scoring, and continuous learning from human

corrections and security incidents.

Deepanjan Mukherjee / IJAIBDCMS, 7(1), 32-38, 2026

34

Fig 1: System Design and Architecture of Multi-Agent

Security Framework

3.1. Security Orchestrator Agent (Agent 0)

The meta-agent manages specialized agents. It gets

webhooks from development tools to receive the events,

decides which of the agents are to call based on SDLC stage,

sends messages back and forth between agents based on

Model Context Protocol, gathers the confidence score to

make overall security decisions. If the confidence scores go

under 0.7, the orchestrator can escalate to the human review

queue with explanation of why. It keeps the Shared Security

Knowledge Base that stores threat models, vulnerability data,

and compliance requirements accessible to every agent.

3.2. Threat Modeling Agent (Agent 1)

This task is carried out by using STRIDE, PLOT4AI,

and PASTA methodologies to analyze requirements

documents and user stories to create threat models. Agent 1

analyzes user and requirements reports of use cases and

threat detection materials before conducting threat modeling.

It establishes trust boundaries, attack surfaces, and data flows,

producing security user stories including acceptance criteria.

The agent combines Retrieval-Augmented Generation and

existing threat intelligence databases (e.g., MITRE

ATT&CK [16], CVE) to identify and base analysis upon

known attack patterns. It generates risk-rated threat

inventories in severity categories along with compliance

mappings to HIPAA, GDPR, SOC2, PCI-DSS. Confidence

scoring combines coverage completeness (0.4 weight), threat

database match quality (0.3), and LLM certainty (0.3).

3.3. Security Design Agent (Agent 2)

Agent 2 compares proposed architectures with threat

models from Agent 1. Security controls are verified as

solutions addressing issues raised at trust boundaries. It

recommends secure design patterns that include OAuth2,

mTLS, and zero-trust architectures and identifies anti-

patterns that include hardcoded credentials, over-permissive

access controls, and unencrypted storage of sensitive

information. The agent creates API security features:

authentication, authorization, rate limiting, and input

validation. RAG (Retrieval-Augmented Generation) using

secure design pattern databases (OWASP, CWE Top 25,

NIST) assures that recommendations adhere to industry

practices. Confidence scoring on features weighs controls

adequacy (0.4), quality of pattern match (0.3), and LLM

certainty (0.3).

3.4. Secure Code Generation Agent (Agent 3)

Agent 3 represents the framework's core innovation,

generating code with embedded security requirements and

iterative changes for security degradation. It works with

multi-provider LLM based orchestration with Claude Sonnet

4 as primary, fallback to GPT-4o, and smaller specialized

models for specific tasks. Security requirements are fed into

the generation prompts through RAG that include secure

coding guidelines (OWASP Secure Coding Practices, SANS

Top 25, CWE). The agent analyzes real-time SAST using

SonarQube and computes security scores after each round.

The iterative security gate mechanism restricts refinements

to just 5 iterations with degradation detection between

rounds. Confidence scoring integrates SAST clean score

(0.4), LLM security analysis (0.3), and iteration safety trend

(0.3). The iterative gate algorithm is described in detail in

Section V.

3.5. Security Testing Agent (Agent 4)

Agent 4 creates security test cases with threat models,

automates penetration testing, and confirms that security

controls execute as intended. It is responsible for bringing

together DAST tools (OWASP ZAP, Burp Suite), fuzzing

tools (SQLMap for SQL injection, XSSer for cross-site

scripting), and API security testing frameworks (Postman,

REST Assured). The agent provides validation of

exploitability of vulnerabilities found through proof-of-

concept exploits to confirm that findings are real risks versus

false positives. Test results are prioritized based on severity,

exploitability, and business impact. Test coverage (0.4),

exploit validation (0.3), and historical false positive rate (0.3)

constitute confidence scoring.

3.6. CI/CD Security Agent (Agent 5)

Agent 5 administers security measures in deployment

pipelines, by scanning containers (Trivy, Snyk, Aqua),

determining dependencies using Software Composition

Analysis (OWASP Dependency-Check, Dependabot),

scanning Infrastructure-as-Code (Checkov, Terrascan, tfsec),

and discovering secrets (GitGuardian, TruffleHog). It uses

Open Policy Agent or Kyverno to enforce Policy-as-Code,

blocking deployments when critical vulnerabilities are found

and passing high-severity results to the security engineers.

The agent automatically generates compliance evidence

artifacts for each deployment which aligns with SOC2, ISO

27001, and other audit needs. Security gate decisions come

in several tiers: every passing check allows deployment;

critical failure prevents deployment and triggers P0 (priority

0) incident response. High findings will enable deployment

(with warnings). Confidence scoring considers gate passing

rate (0.5), vulnerability severity (0.3), and historical incident

rate (0.2).

3.7. Runtime Security Agent (Agent 6)

The agent continuously monitors security in production

environments and inspects application logs, access logs, and

security events from event management systems (Splunk,

ELK Stack, Azure Sentinel). Machine learning models

identify anomalies, such as failed login spikes, unusual data

access patterns, and lateral movement attempts. When

Deepanjan Mukherjee / IJAIBDCMS, 7(1), 32-38, 2026

35

incidents are found with high confidence (>0.8) and critical

severity, the agent automatically executes response

playbooks such as isolating compromised instances, rotating

credentials, and blocking malicious IP addresses. Importantly,

incident learnings feedback to Agent 1, an internal feedback

loop designed to ensure production threats drive future threat

model iteration. Confidence scoring combines detection

accuracy (0.4), historical true positive rate (0.3), and LLM

contextual analysis (0.3).

3.8. Compliance & Audit Agent (Agent 7)

Being a cross-cutting concern across all SDLC stages,

Agent 7 monitors compliance status continuously. It maps

security controls that other agents apply back to requirements

of regulatory frameworks (HIPAA, GDPR, SOC2, PCI-DSS,

ISO 27001) and automatically collects audit evidence from

artifacts created throughout the SDLC. The agent offers

regulatory guidance to other agents for meeting regulatory

requirements in executing security procedures. It provides

real-time compliance dashboards reporting control coverage,

evidence quality, and remediation priority, enabling

organizations to remain audit ready. Confidence scoring uses

controls coverage (0.4), evidence quality (0.3), and LLM

regulatory interpretation (0.3).

4. SDLC Integration
This approach uses webhook-based triggers and API

integrations to connect with existing development workflows.

Webhooks trigger Agent 1 when Product Managers create

epics in Jira or upload requirements to Confluence,

generating threat models and auto-creating security stories.

Engineers committing architecture diagrams to GitHub

trigger Agent 2 through webhooks, which posts security

recommendations as Pull request comments and blocks

merges for critical findings. Agent 3 also integrates with IDE

extensions (VS Code, IntelliJ) for instant security alerts as

developers begin to work, as well as Git pre-commit hooks

for further validations before commit. Pull requests activate

Agent 4 in GitHub Actions workflows by executing DAST

against staging environments, which also post test results as

PR comments with pass/fail status checks.

Code merged to the main branches triggers Agent 5

directly in CI/CD pipelines (e.g., Jenkins, GitHub Actions)

and runs parallel security scans: secrets scanning, SCA,

container scanning, and IaC scanning. The agent makes

security gate decisions (pass, block, escalate) and auto-

generates compliance evidence. Application logs in

production stream to event management systems where

Agent 6 continuously monitors anomalies. For high-

confidence critical incidents, automated response playbooks

are executed via SOAR (Security Orchestration, Automation,

and Response) platforms. Agent 7 operates throughout the

entire process, with the shared event bus consuming events,

mapping them to compliance frameworks, and keeping real-

time dashboards of SOC2, HIPAA, and ISO 27001 readiness

status.

5. Iterative Security Gates
The Secure Code Generation Agent (Agent 3)

instantiates the core innovation of the framework where

iterative security gate mechanisms block the documented

37.6% increase in vulnerability associated with AI code in

the process of refinement [4]. This fills an essential void that

iterative LLM interactions with little safeguards

inadvertently add a new flaw to already secure code.

Fig 2: Flow Diagram of Secure Code Generation Agent

with Iterative Security Gates

5.1. The Iterative Degradation Problem

A study looking at 400 code samples on 40 rounds of

AI-based system improvement found that critical

vulnerabilities rose by 37.6% simply with five iterations [4].

This is because, when LLMs are told to make code better,

they could create new patterns in what their attempts are to

optimize, reformat, or add functionality that could cause

security holes. Without verification loops on the security

posture across iterations, degradation is never detected

before you move code into production. Traditional

development presumes that human developers will remain

aware of security across modifications; LLMs are simply

missing the persistent security context and will generate

vulnerable patterns when fine-tuning for other goals

performance, readability, or otherwise. Research has shown

that the use of AI assistants leads to developers having a

false sense of confidence in these automated solutions and

rating these AI-generated solutions as secure [9], amplifying

the risk.

5.2. Iterative Security Gate Algorithm

The algorithm starts when a developer asks to generate code,

along with a prompt and security requirements from Agent 2.

Agent 3 starts an iteration loop with 5 iterations max,

weighing the improvement opportunity against risk of

degradation. Four steps are followed in each iteration:

 LLM Code Generation: The LLM prompt is fed

secure coding guidelines by RAG; security

requirements are embedded into the LLM prompt

alongside secure coding (OWASP Secure Coding

Practices, SANS Top 25, CWE). Security-aware

prompts are used by the LLM to generate code.

 Security Analysis: SAST apps like SonarQube look

at the generated code. The LLM does the contextual

Deepanjan Mukherjee / IJAIBDCMS, 7(1), 32-38, 2026

36

security inspection, getting into business logic and

catching things that SAST tools don‟t pick up on. A

security score (0-1 scale) is calculated using:

security_score = (sast_clean_score × 0.4) +

(llm_security_analysis × 0.3) +

(iteration_safety_trend × 0.3).

 Degradation Check: For iterations > 1, the agent

compares current security_score to the previous

iteration. If security_score < previous_score,

degradation is logged. If security_score < 0.5 (low

confidence), immediate escalation to human

security team occurs with explanation of

degradation.

 Confidence Decision: If security_score ≥ 0.7, pass

code and return to developers. If 0.5 ≤

security_score < 0.7, design the remediation prompt

with SAST findings and LLM recommendations

together for next iteration. If security_score < 0.5,

report to the human security team. If maximum

iterations (5) are reached without achieving

security_score ≥ 0.7, escalation happens with

message 'Max iterations exceeded.'

5.3. Confidence Assessment Items

The sast_clean_score describes severity of the SAST

result: 1.0 is no findings, and critical findings lower the score

to 0.0, high to 0.3, medium to 0.6, low to 0.8. The

llm_security_analysis component is the LLM's evaluation of

the context of the system security, analyzing code for

authorization bypass vulnerabilities, insecure data handling

patterns, cryptographic weaknesses, and race conditions,

generating both numerical score (0-1) and textual

explanation. For the iteration_safety_trend, we measure

whether the security is improving or degrading for a given

iteration: this defaults to a value of 0.5, neutral value for the

first iteration; for subsequent iterations, the rate of change

(current_score - previous_score) is normalized to 0–1 range,

where improving security gives better scores than 0.5, while

degrading security gives lower than 0.5.

5.4. Avoid the 37.6% Increase

The framework directly addresses the documented

increase in vulnerabilities by introducing security

checkpoints between iterations. This degradation check

guarantees immediate attention to any decrement, reducing

the security posture. The maximum iteration limits prevent

unbridled iteration that can exacerbate vulnerabilities. The

confidence scoring integrates automated tool findings

(SAST) with contextual understanding (LLM), to enable

extensive security analysis. Early estimates indicate that this

method has potential to decrease the risk of vulnerability

introduction rate during iterations of refinement by between

60 and 80% over unconstrained LLM interaction, but these

estimates need to be validated empirically through the

evaluation methodology presented in Section VI.

6. Proposed Evaluation
A robust evaluation framework enables the examination

of detection accuracy, system performance, and operational

impact of this approach, confirming its effectiveness. The

evaluation uses controlled testing of the proposed framework

against baseline DevSecOps tools using real-world

codebases from GitHub having known vulnerabilities

(OWASP Benchmark, Juliet Test Suite) and synthetic code

generated by various LLMs with and without security

prompts.

Detection accuracy metrics are derived from standard

vulnerability detection research methods using sensitivity,

specificity, positive predictive value (PPV), and negative

predictive value (NPV), comprising true positives, true

negatives, false positives, and false negatives. The objective

metrics are sensitivity > 90% for critical vulnerabilities (SQL

injection, remote code execution, authentication bypass),

sensitivity > 85% for high-severity vulnerabilities (XSS,

CSRF), and specificity > 85% in all cases, the goal being a

limit on false positives producing alert fatigue.

Standard detection metrics are calculated as follows:

 ()
 ()

 ()
 ()

Where TP = true positives (vulnerabilities correctly

detected), TN = true negatives (safe code correctly

identified), FP = false positives (safe code flagged as

vulnerable), and FN = false negatives (vulnerabilities

missed).

The goal is to balance the developer speed with

performance (running a real-time system, for instance,

checks (IDE integration, pre-commit hooks) that have a

speed target of < 500ms p95 latency, full pipeline security

analysis of < 5 minutes p95 latency and a throughput of over

100 requests/second of sustained load, 100+ requests/sec

burst capacity to 1000+ requests/sec etc. Operational KPIs

that determine its focus would be Mean Time to Detect < 1

hour; Mean Time to Remediate < 4 hours for all critical

vulnerabilities and false positives < 15% and reduction in

security debt 30% -50% within 6 months.

A large part of the critical evaluation element analyses

whether code produced using an iterative security gate and

without an iterative security gate is better or worse. To

generate code with same prompt and requirement, the code is

generated using two channels – our proposed framework,

with a fully built-in iterative gate mechanism and a minimal

LLM generation baseline allowing 5 iterations without

security checkpoints. Blind security auditors do manual

reviews, manually validating the correctness of the results of

vulnerability counts and severity distributions to directly

verify whether iterative gates prevent a documented 37.6%

vulnerability increase.

7. Discussion
The introduction of this framework allows us to

overcome existing gaps within security practices by covering

all aspects of SDLCs, thus moving security left to identify

Deepanjan Mukherjee / IJAIBDCMS, 7(1), 32-38, 2026

37

and prevent vulnerabilities as early as possible where they

should be caught and remediation costs minimized. The

iterative security gate mechanism in the application

addresses a documented decline in security of AI-generated

code, which is not found in popular code generation tools

(e.g., GitHub Copilot, ChatGPT). Security specialization sets

the proposal apart from generic multi-agent frameworks that

don't have domain-specific security experience, integrate

tools, or optimize prompting security.

The hybrid of rule-based tools and LLM reasoning

builds both: rule-based tools deliver deterministic, auditable

output, while LLMs provide context and natural language

explanations. These can involve considerations like the

technical stack used (LangGraph to manage complex states,

CrewAI to orchestrate simpler threads), which kind of LLM

provider is selected (Claude Sonnet 4/GPT-4o for more

complex reasoning models, smaller models for specific

tasks), as well as scalability requirements. Cost-analysis

should consider LLM API costs [17][18] totaling about

$164,000 a year for an enterprise managing 10,000 code

generation requests daily, although stopping one (often

serious) breach (typically costing $4.35M) [19] would put up

significant return on investment.

Limitations are needed to establish the quality standards

of LLMs with hallucinations or errors that could limit the

efficiency of security testing, false positive/negative trade-

offs that require fine tuning threshold settings, integration

requirements requiring the existing DevSecOps maturity [20],

development & security teams having to learn up to the

software usually taking 3-6 months to build, and context-

limiting analysis of very large codebases over 100,000 lines.

This framework offers significant value to regulated

sectors (such as healthcare or finance) that need evidence of

demonstrable security in place, with applicability varying

between startup contexts where it establishes security

practices early versus enterprise environments where it

augments existing security teams and processes. Possible

future improvements might involve domain-sensitive fine-

tuning for industry verticals, federated learning providing an

opportunity for organizations to exchange security insights

without publicizing sensitive code, integrating SBOM

(Software Bill of Materials) to secure supply chains, growing

beyond web/API development efforts into mobile and IoT

technology or securing AI supply chains to prevent the

model from falling into a security pit.

8. Conclusion and Future Work
This paper introduces a new, multi-agent security

framework for AI-assisted development. Its three major

strengths are that it comprises seven specialized security

agents spanning the entire SDLC, performs an iterative

security gate mechanism to prevent documented

vulnerabilities from rising with code updates, and seamlessly

integrates with existing development tools. With a model

that moves security to the left and makes security an

integrated consideration from requirements through

production monitoring, security becomes more than just a

reactive constraint and will act as a proactive engine of

development velocity.

The hybrid approach integrating rule-based security

tools with LLM-powered contextual analysis not only

utilizes the benefits of both approaches but also reduces each

other‟s weaknesses. The confidence score and human-in-the-

loop protocol for escalation are built to balance automation

benefits with safety concerns to address concerns of applying

AI in security-critical settings. The proposed evaluation

framework ensures a high level of assessment aiming for >

90% sensitivity of critical vulnerabilities and > 85%

specificity for reduction of alert fatigue.

Future research includes domain-specific fine-tuning of

agents (healthcare agents for nuances of HIPAA, fintech

agents optimized for PCI-DSS), federated learning to allow

firms to share security expertise without revealing sensitive

code, integration with SBOM generation and analysis for

more secure supply chain, extending beyond web and API

development to mobile, embedded systems and IoT devices,

and an AI supply chain security investigation to ensure that

AI models themselves are not compromised and not making

the deliberate generation of vulnerable code.

References
1. J. Becker, N. Rush, E. Barnes, and D. Rein, “Measuring

the Impact of Early-2025 AI on Experienced Open-

Source Developer Productivity,” arXiv.org, 2025.

https://arxiv.org/abs/2507.09089

2. “GitHub CEO says Copilot will write 80% of code

„sooner than later,‟” Freethink, Jun. 17, 2023.

https://www.freethink.com/robots-ai/github-copilot

3. “Examining Zero-Shot Vulnerability Repair with Large

Language Models | IEEE Conference Publication | IEEE

Xplore,” ieeexplore.ieee.org.

https://ieeexplore.ieee.org/abstract/document/10179324

4. “Peer-reviewed and accepted in IEEE-ISTAS 2025

Security Degradation in Iterative AI Code Generation: A

Systematic Analysis of the Paradox,” Arxiv.org, 2025.

https://arxiv.org/html/2506.11022

5. S. Hong et al., “MetaGPT: Meta Programming for

Multi-Agent Collaborative Framework,” arXiv.org, Aug.

07, 2023. https://arxiv.org/abs/2308.00352

6. Q. Wu et al., “AutoGen: Enabling Next-Gen LLM

Applications via Multi-Agent Conversation,” arXiv.org,

Oct. 03, 2023. https://arxiv.org/abs/2308.08155

7. “Measuring the Impact of Early-2025 AI on

Experienced Open-Source Developer Productivity,”

METR Blog, 2025. https://metr.org/blog/2025-07-10-

early-2025-ai-experienced-os-dev-study/

8. Z. Li, S. Dutta, and M. Naik, “LLM-Assisted Static

Analysis for Detecting Security Vulnerabilities,”

arXiv.org, 2024. https://arxiv.org/abs/2405.17238

9. N. Perry, M. Srivastava, D. Kumar, and D. Boneh, “Do

Users Write More Insecure Code with AI Assistants?,”

arXiv (Cornell University), Nov. 2022, doi:

https://doi.org/10.1145/3576915.3623157

10. S. Stein, “CrowdStrike Researchers Identify Hidden

Vulnerabilities in AI-Coded Software,”

https://arxiv.org/abs/2507.09089
https://www.freethink.com/robots-ai/github-copilot
https://ieeexplore.ieee.org/abstract/document/10179324
https://arxiv.org/html/2506.11022
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2308.08155
https://metr.org/blog/2025-07-10-early-2025-ai-experienced-os-dev-study/
https://metr.org/blog/2025-07-10-early-2025-ai-experienced-os-dev-study/
https://arxiv.org/abs/2405.17238
https://doi.org/10.1145/3576915.3623157

Deepanjan Mukherjee / IJAIBDCMS, 7(1), 32-38, 2026

38

Crowdstrike.com, 2025.

https://www.crowdstrike.com/en-us/blog/crowdstrike-

researchers-identify-hidden-vulnerabilities-ai-coded-

software/

11. Y. Dong et al., “A Survey on Code Generation with

LLM-based Agents,” Arxiv.org, 2025.

https://arxiv.org/html/2508.00083v1

12. “The Evolution of DevSecOps with AI | CSA,”

Cloudsecurityalliance.org, 2024.

https://cloudsecurityalliance.org/blog/2024/11/22/the-

evolution-of-devsecops-with-ai

13. “PLOT4ai - Privacy Library Of Threats 4 Artificial

Intelligence,” plot4.ai. https://plot4.ai/

14. Umm-e- Habiba, M. Haug, J. Bogner, and S. Wagner,

“How mature is requirements engineering for AI-based

systems? A systematic mapping study on practices,

challenges, and future research directions,”

Requirements Engineering, Oct. 2024, doi:

https://doi.org/10.1007/s00766-024-00432-3

15. J. P. Morgan, “Revolutionizing Threat Modeling with

AI: The Threat Modeling Co-Pilot,”

Jpmorganchase.com, Oct. 03, 2025.

https://www.jpmorganchase.com/about/technology/blog/

aitmc

16. B. Strom, A. Applebaum, D. Miller, K. Nickels, A.

Pennington, and C. Thomas, “MITRE ATT&CK®:

Design and Philosophy,” Jul. 2018. Available:

https://www.mitre.org/sites/default/files/2021-11/prs-19-

01075-28-mitre-attack-design-and-philosophy.pdf

17. “Pricing,” www.anthropic.com.

https://www.anthropic.com/pricing

18. OpenAI, “API Pricing,” OpenAI, 2025.

https://openai.com/api/pricing/

19. IBM, “IBM Report: Consumers Pay the Price as Data

Breach Costs Reach All-Time High,” IBM Newsroom,

Jul. 27, 2022. https://newsroom.ibm.com/2022-07-27-

IBM-Report-Consumers-Pay-the-Price-as-Data-Breach-

Costs-Reach-All-Time-High

20. “OWASP Top 10 CI/CD Security Risks | OWASP

Foundation,” owasp.org. https://owasp.org/www-

project-top-10-ci-cd-security-risks/

https://www.crowdstrike.com/en-us/blog/crowdstrike-researchers-identify-hidden-vulnerabilities-ai-coded-software/
https://www.crowdstrike.com/en-us/blog/crowdstrike-researchers-identify-hidden-vulnerabilities-ai-coded-software/
https://www.crowdstrike.com/en-us/blog/crowdstrike-researchers-identify-hidden-vulnerabilities-ai-coded-software/
https://arxiv.org/html/2508.00083v1
https://cloudsecurityalliance.org/blog/2024/11/22/the-evolution-of-devsecops-with-ai
https://cloudsecurityalliance.org/blog/2024/11/22/the-evolution-of-devsecops-with-ai
https://plot4.ai/
https://doi.org/10.1007/s00766-024-00432-3
https://www.jpmorganchase.com/about/technology/blog/aitmc
https://www.jpmorganchase.com/about/technology/blog/aitmc
https://www.mitre.org/sites/default/files/2021-11/prs-19-01075-28-mitre-attack-design-and-philosophy.pdf
https://www.mitre.org/sites/default/files/2021-11/prs-19-01075-28-mitre-attack-design-and-philosophy.pdf
https://www.anthropic.com/pricing
https://openai.com/api/pricing/
https://newsroom.ibm.com/2022-07-27-IBM-Report-Consumers-Pay-the-Price-as-Data-Breach-Costs-Reach-All-Time-High
https://newsroom.ibm.com/2022-07-27-IBM-Report-Consumers-Pay-the-Price-as-Data-Breach-Costs-Reach-All-Time-High
https://newsroom.ibm.com/2022-07-27-IBM-Report-Consumers-Pay-the-Price-as-Data-Breach-Costs-Reach-All-Time-High
https://owasp.org/www-project-top-10-ci-cd-security-risks/
https://owasp.org/www-project-top-10-ci-cd-security-risks/

