
International Journal of AI, BigData, Computational and Management Studies 

Noble Scholar Research Group | Volume 7, Issue 1, PP 25-29, 2026 

ISSN: 3050-9416 | https://doi.org/10.63282/3050-9416.IJAIBDCMS-V7I1P103     
 

 

 

Original Article  

 

The Future of Serverless Architectures in Data 

Engineering 
 

Harshith Kumar Pedarla 

Seattle, USA. 

 

Received On: 18/11/2025                 Revised On: 20/12/2025               Accepted On: 26/12/2025             Published On: 08/01/2026 

 

Abstract - With every increase in the complexity and volume of data engineering workloads, organizations face highly 

important architectural choices to make in terms of compute execution environments. The serverless computing 

platforms and containerized orchestration systems presented by two dominant paradigms provide different favourable 

measurements in terms of performance, cost, scalability, and operating overheads. Although the concept of a 

serverless platform features automatic scaling, simplified operations, and a pay-as-you-use business model, the 

containerized offers predictable performance, control of resources in fine-grained way and it is useful with long-

running workloads. This paper compares empirically and data-driven two architectures (serverless and 

containerized) in terms of data engineering pipelines, namely, ETL workflows, event-driven processing, streaming 

analytics, and batch jobs. Based on the public cloud benchmark datasets, academic measurement literature, Open 

Telemetry traces, and published pricing models, the research conducts measurement of latency, throughput, economic 

efficiency, scalability under burst workload, and the reliability of this operation. The results reveal that serverless 

systems perform better in bursty and event-driven workloads that have unpredictable demand, but containerized 

systems have better performance in sustained and high-throughput pipes and resource-intensive workloads. The 

conclusion of the paper ended with practical recommendations to offer the builders on the best model of execution 

without violating workload characteristics. 

 

Keywords - Serverless, Python, Kubernetes, Interactive batch processing, Data pipelines, Analytics Monitoring, Cost 

Engineering, Scalability. 

 

1. Introduction 
In the modern world, the most common application of 

data engineering pipelines is to aid analytics, machine 

learning, business intelligence, and real-time decisions being 

made by organizations. These pipelines have very diverse 

workloads such as extract- transform-load (ETL) jobs, event-

driven processes, batch analytics, and real-time streaming 

systems. With an increase in the volume of data and 

decreased latency performance, the decision of execution 

architecture becomes one of the most important engineering 

decisions [1]. In the last ten years, serverless computing has 

become one of the interesting alternatives to the conventional 

infrastructure management. AWS Lambda, Google Cloud 

Functions and Azure Functions provide a pay-per-use cost 

model and automatically scale systems, including a platform 

such as AWS Lambda, Google cloud functions, and Azure 

functions. Such attributes are what render serverless 

architectures especially appealing to workloads that are 

event-driving in nature and those that are irregular [2]. 

 

On the other hand, the containerized environments that 

are managed through platforms like Kubernetes, Amazon 

EKS, and Amazon ECS systems are the driving force of the 

large-scale data platforms. Containers have predictable 

behavior, guarantees resource sharing, and long process 

durability which are common with developing data pipelines 

[2]. Although both paradigms have been broadly adopted, 

organizations still have a problem in choosing the right 

model to implement in particular workloads of data 

engineering. This study tries to overcome this issue because 

it presents the comparison and contrast of real-life 

performance measures, cost, and telemetry data, instead of 

making broad theoretical comparisons [2]. 

 

2. Background and Related Work 
Problem Statement:  

2.1. Serverless Computing in Data Engineering 

Serverless computing is a computing method that allows 

developers to run code based on events without 

administering the underlying servers. Serverless platforms 

are typically applied in lightweight ETls, log processing, and 

micro- batch analytics in the context of data engineering. The 

advantages of serverless mentioned earlier in the previous 

research include high speed of elasticity and lower 

complexity of operations but also point to the limitations 

related to cold starts, time constraints on executions, and 

limited resources [3]. 

 

2.2. Containerized Forms of Data Pipelines 

Containerization has emerged as the new reality of the 

deployment of scalable data platforms. Kubernetes based 

architectures provide a complex dependency model, 

customized scheduling and high throughput workloads. 

Comparative studies on Kubernetes and serverless 
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environments highlight the benefits of the former in terms of 

the sustained workloads but remark that they come at a larger 

cost [3]. 

 

2.3. Empirical Studies and Gaps 

A number of scholarly works have quantified the 

performance of serverless in production systems such as 

distributions of latency as well as cost behaviour. 

Nevertheless, there are a lot of available literature on 

microbenchmarks and not end-to-end pipelines of data 

engineering. The present paper is an expansion of previous 

studies in that it combines several publicly available datasets 

to give a comprehensive comparison [3]. 

 

3. Data Engineering Architecture Issues  
With the increase in the size of data engineering pipelines, 

both in terms of volume, speed and sophistication, many of 

the architectural constraints become obvious. Neither a 

serverless nor a containerized model of execution addresses 

the issues without any special challenges which have a direct 

impact on the performance, cost efficiency, scalability, and 

operative reliability. These issues are fundamental in 

determining the right architecture of a certain data workload 

[4]. 

 

3.1. Problems of Serverless Data Engineering. 

Cold start latency is one of the most difficult problems of 

serverless platforms. An invocation of a function without a 

warm execution environment happens for a cold start, which 

initiates a runtime start, dependency loading and startup of a 

container. Empirical observations continuously indicate that 

cold start latency is strongly dependent on runtime leading to 

Java-based functions having delays over one second, as 

opposed to Node.js and Python functions which typically 

take less than several hundred milliseconds. In latency 

sensitive data pipelines, e.g. real-time event processing or 

stream ingestion, such delays can traverse a pipeline, and 

break service-level guarantees [4]. The other significant 

constraint is that of time and resources required to execute it. 

Serverless architecture has rigid constraints of maximum 

execution time, memory, and CPU utilization. Although 

suitable in short-term transformations, these limitations make 

long-lasting ETL tasks difficult and have to divide the 

workloads into smaller units of work and perform 

orchestration layers. This means that the architecture is more 

complex and harder to debug [5] The throttling of 

concurrency is also an issue. Whereas serverless platforms 

do not need scaling, they have account-level and regional 

concurrency restrictions. Throttling may cause invocation 

failures or a longer latency especially when dealing with 

bursty streams of data, which is especially bad in the case of 

ingestion pipelines. 

 

3.2. Problems of Containerized Data Engineering. 

Containerized environments though more flexible, have 

their own challenges. The greatest one is operational 

complexity. To implement and operate pipelines built using 

Kubernetes, one will need skills in cluster configuration, 

network, security, scaling policy, and tooling observability. 

Poorly configured clusters usually cause resource contention, 

ineffective scheduling or failure domino [5].The other 

limitation is scaling latency. In contrast to serverless 

systems, Kubernetes scaling is reliant oni) metrics collection 

frequency and ii) horizontal pod autoscaler (HPA) targets 

and iii) node provisioning time. Scaling delays can be 

empirically observed to take tens of seconds to a few minutes 

which is unacceptable in a workload with elasticity needs of 

near-instant response [6]. Lastly, the issue of being cost 

inefficient at times of idleness is still experienced. 

Containers normally allocate resources whether they are 

utilized or not, and therefore do not use the compute capacity 

when the demand is low unless autoscaling is aggressive or 

agency instances are deployed. 

 

4. Information and Empirical Research Design 
This study follows a strictly empirical, data-based 

approach, where no theoretical modeling is done and the 

emphasis made on the actual measurements, logs, and price 

data. The methodology is focused on reproducibility, 

transparency and practicality. Reports regarding cloud 

provider benchmarks will be produced with the assistance. 

 

4.1. Cloud Provider Benchmark Reports. 

Documentation on the performance of public 

performances by AWS, Google cloud, and Microsoft Azure 

gives data to serve as a baseline of the analysis of serverless. 

These reports will contain cold start distributions, 

applications of warm execution latency percentiles, and 

curves of memory-performance scaling. The study eliminates 

the bias of vendors by combining the metrics of the 

providers. 

 
Fig 1: How to benchmark your cloud costs from 

iTechOps 

 

4.2. Academic datasets consisting of published logs. 

Large-scale studies of the serverless workload include 

peer-reviewed literature, like downloadable CSV logs of per-

invocation latency also throughput measurements and cost 

metrics. These data can be compared statistically in terms of 

tail latencies, concurrency behavior and execution variance 

of real workloads [6]. 

 

4.3. OpenTelemetry Containerized Workloads Traces 

OpenTelemetry tracing allows tracing the containerized 

systems in detail. Indicators of Kubernetes load performance, 
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including CPU usage, memory pressure, pod startup time and 

scheduling delays give us a clue about Kubernetes 

performance under load. These marks are critical to the 

comparison of auto-scaling behavior of serverless with 

containers elasticity [6]. 

 

4.4. Modeling costs using publicly known prices 

AWS lambda pricing, provisioned concurrency pricing 

and EKS/ECS compute pricing are used along with actual 

invocation logs to come up with realistic cost estimates. This 

will provide the basis of making decisions with the real 

pricing structures, based not on mere assumptions [6]. 

 

 
Fig 2: Pricing Modelling and Strategies from Vistage 

 

5. Characteristics of Latency and Comparative 

Analysis 
Latency is a critical issue that influences the pipeline 

responsiveness, system reliability and user experience. This 

chapter considers both the average and tail latencies taking 

into consideration the implication of these parameters in data 

engineering workload [7]. 

 

5.1. Serverless Latency Profiles 

Experimental data indicates that serverless functions 

have very small warm-up latency, nearly 10 milliseconds on 

lightweight transformations. Long-tail latency is however 

caused by cold starts especially when heavier runtimes are 

used. These delays vary making the prediction of latency 

difficult.Containerized Latency Profiles It is important to 

also acknowledge containerized latency profiles [7]. 

 

 

 

5.2. Containerized Latency Profiles  

The fact that containerized latency profiles should be 

mentioned must also be acknowledged. Containerized 

workloads have greater levels of baseline startup latency 

because of pod start up and scheduling. Nevertheless, 

containers exhibit consistent and reliable execution lag in 

execution, which means that they are suitable on execution 

pipelines where continuous processing is required [7]. 

 

5.3. Tail Latency Implications 

Latency in tailing (95th and 99th percentile) is 

especially very important in data pipelines because slow 

tasks are able to defer whole processes. Experiments show 

that serverless systems have even greater variation in tail 

latency, and containers have smaller deviation of latency 

distributions after warm-up [8]. 

 

6. Throughput and Resource Utilization 

Analysis 
The most important performance indicators of data 

engineering pipelines are throughput and resource usage, 

particularly when it comes to ETL that consumes resources, 

ETL at scale, streaming sources and ETL at scale. 

Throughput unlike latency is concerned with the capacity of 

a system to endure the consequences of processing data 

continuously. In this chapter, the author empirically 

compares serverless and containerised architectures based on 

real world benchmark data and telemetry data [8]. 

 

6.1. Serverless Architecture Throughput Characteristics. 

Serverless implement throughput (mainly) by using 

horizontal scaling, i.e. by adding additional concurrent 

invocations of functions as required by workload. According 

to published ETL benchmarks, under moderate memory 

allocations (e.g. 1024 MB), it is possible to scale to 40-50 

MB of work-per-invocation at light weight transformations 

running in AWS Lambda functions. This allows serverless to 

be very effective with the workloads that are decomposable 

to independent and parallel work which could be log 

processing, record-level transformation, and fan-out ETL 

stages. But empirical researches reveal a similar diminishing 

curve of returns with increase in invocation concurrency. 

Some of the factors that can cause this are concurrency 

throttling, common underlying infrastructure, and 

bottlenecks in the I/O due to interaction between functions 

and centralized storage systems like object stores. 

Consequently, serverless has an efficient scaling of 

throughput up to a limit but it becomes less predictable in the 

situation of the massively high load [8].  

 

6.2. Characteristics of the throughput in Containerized 

Architectures. 

Such environments that are containerized and are 

scheduled by Kubernetes tend to have dissimilar throughput 

behavior. Containers the benefit of siguinuous high-

throughput processing of containers includes dedicated CPU 

and memory allocation. Performance Benchmarks have 

shown that a single Kubernetes pod with a single virtual 

CPU is capable of more than 60 MB/s sustained ETL 

workload or higher, compared to individual serverless 

functions [9]. In addition, the containerized systems show a 

better consistency in throughput in the long run. The 

characteristics of trace with OpenTelemetry show that the 

use of containers is well-defined in situations of batch 

processing, stream analytics, and stateful workloads, stable 

patterns of CPU usage, and minimum performance decline 

under continuous load [9]. 

 

6.3. Efficiency of Resource utilization. 

Efficiency in resources utilization is very different 

between the two paradigms. Abstracted allocation of 

resources by serverless platforms may result in inefficient 
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use of CPU resources because of predetermined memory to 

CPU proportions. Containerized environments on the other 

hand can fine-tune CPU and memory resources and achieve 

greater utilization and less wastage given predictable loads 

[9]. 

 

7. Cost Efficiency and Economic Trade-Off  
The aspect of cost is a determining factor in the 

selection of architecture especially when using a vast data 

engineering solution within a limit. In this chapter, a 

comparison of serverless and containerized cost models with 

real pricing data and real workload traces will be developed 

based on data. 

 

7.1. Serverless Cost Characteristics 

Serverless is a pricing method where charge is sent on a 

pay-per-use model, based on the execution time and the 

memory used. Experiments with empirical costs of serverless 

architecture on AWS Lambda pricing indicate that serverless 

are very cost-efficient in low-frequency, bursty workloads. 

An example would have pipelines that run ad hoc processes 

or daily batch processes whose costs will be minimal with 

zero idle charges [10]. Nevertheless, recorded logs on 

invocations have revealed that costs grow exponentially with 

the constant workloads. Serverless might not only be cost-

effective in high-throughput speed scenarios, but provisioned 

concurrency, a technique to alleviate cold starts, adds even 

more costs, and negatively impacts the economics of 

serverless [10].  

 

7.2. Containerized Cost Characteristics. 

Container applications are based on per-hour or per-

second bills of compute. Although this model is a costly one 

even at idle times, it is cheaper as the utilization goes high. 

The empirical evidence demonstrates that per-unit cost of 

processing decreases substantially when using sustained 

workloads that run on reserved or spot instances than the 

ones without any servers [10]. 

 

7.3. Cost Crossover Analysis 

This paper provides evident cost crossovers with the help 

of real workload traces. Below some invocation threshold, 

serverless architectures become cost-effective whereas 

containerized solutions become cost-effective at large 

workloads, i.e., at high data volumes. These results support 

the value of the workload characterization as a part of 

optimization of the costs [11]. 

 

8. Behaviour of Scalability and Burst Handling 
One of the most commonly mentioned benefits related to 

serverless computing is scalability during the unpredictable 

demand. This chapter analyses behavior of scalability based 

on published concurrency test and telemetry. 

 

8.1. Serverless Burst Scaling 

Serverless computing platforms exhibit a high burst scale 

claim, so the studies conducted experimentally have proven 

that these services can be extended between zero and 

thousands of requests per second in seconds. Such a high 

elasticity is especially useful with event-driven ingestion 

pipelines that have to react to unforeseen traffic burst [11]. 

 

8.2. Dynamics of Kubernetes Scaling 

The scaling containerized is subject to scaling based on 

the horizontal pod autoscaler, the period of metrics 

collection, and the period of the node provisioning. Even 

high-optimized clusters have telemetry that scaling may take 

tens of seconds to several minutes (thus policy-prohibited by 

high responsiveness) due to bursts [11]. 

 

8.3. Engineering Implications 

Serverless technology is more effective in bursts, but once 

the capacity is deployed, containerized environments have a 

higher degree of control and predictability. Such a difference 

has been influential in terms of workload placement and 

architecture [12]. 

 

9. Reliability, Observability and Operational 

Overhead 
To ensure big data engineering platforms, reliability and 

observability are crucial. In this chapter components the 

operational attributes of serverless and containerized 

architecture are compared. 

 

9.1. Reliability Characteristics Reliability The information 

shows the results to be consistent and rely on various 

factors. 

Serverless platforms have the advantage of the 

infrastructure providers and the probability of node-level 

failures is minimized. Nonetheless, the failure diagnosis may 

be difficult when one has limited control over the execution 

environments. Containerized systems on the contrary have 

higher transparency and customization but need to be 

configured carefully to prevent cascading failures [12]. 

 

 
Fig 3: Characteristics of Reliable Data from Intellspot 

 

9.2. The observability and monitoring are noted 

Limitations The low-level performance problems 

typically remain concealed by measurements and logs 

offered by multiple providers, making serverless 

observability typically limited to these results. With the help 

of OpenTelemetry, containerized environments may also be 
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thoroughly monitored, the CPU, memory, network, and 

scheduling behavior could be monitored and helped to 

perform more advanced performance tuning. 

 

9.3. Operational Overhead 

Serverless architectures also present a major trade off 

between the amount of DevOps overhead, such that smaller 

teams are now able to handle complex pipelines. 

Containerized systems have higher operational costs, but 

have more flexibility and control, and would be desirable in 

workloads of mission critical importance [12]. 

 

10. Case Study - Comparative ETL Pipeline 

Execution 
The chapter summarizes the empirical data in the form 

of a comparative case study of the implemented ETL 

pipeline that processes data with the usage of AWS Lambda 

and Amazon EKS. The study determines the performance, 

cost, and reliability in different load settings of published 

datasets of ETL workloads. The experiment results illustrate 

that the serverless implementation is better when the 

workload is sporadic with low overheads on operation but 

the containerized pipeline is better when throughput is 

required to be at high levels and operation costs need to be 

low. The case study sheds light on the trade-offs that can be 

implemented in data engineering teams in the real world 

[13]. 

 

11. Discussion and Architectural 

Recommendations 
This research has shown that architecture selection 

ought to be a workload-based selection, but not an ideology-

based selection. Serverless computing is beneficial as it 

addresses bursty and low-duty-cycle containers, whereas 

containerized computing is more suitable because it takes 

place on pipelines continuously with a high resource 

demand. The hybrid technologies, the use of serverless 

ingestion by using containerized processing backends, 

become a promising solution, which would utilize the 

benefits of both paradigms [14]. 

 

12. Conclusion, Future Reflection Direction 
This paper gives an in-depth, empirical data comparing 

serversless and containerized models of data engineering 

pipelines. Basing the analysis on practical references, the 

telemetry data, and pricing models provide practical 

information to both practitioners and researchers, as the 

research is grounded. Future studies are required to 

investigate hybrid implementation models, better scaling and 

autoscaling frameworks and benchmarking frameworks 

standardization of doing data engineering tasks. The 

architectural assessment based on data will also be a 

necessity in creating effective and scalable data platforms as 

cloud platforms expand [15]. 
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