
International Journal of AI, BigData, Computational and Management Studies

Noble Scholar Research Group | Volume 7, Issue 1, PP 25-29, 2026

ISSN: 3050-9416 | https://doi.org/10.63282/3050-9416.IJAIBDCMS-V7I1P103

Original Article

The Future of Serverless Architectures in Data

Engineering

Harshith Kumar Pedarla

Seattle, USA.

Received On: 18/11/2025 Revised On: 20/12/2025 Accepted On: 26/12/2025 Published On: 08/01/2026

Abstract - With every increase in the complexity and volume of data engineering workloads, organizations face highly

important architectural choices to make in terms of compute execution environments. The serverless computing

platforms and containerized orchestration systems presented by two dominant paradigms provide different favourable

measurements in terms of performance, cost, scalability, and operating overheads. Although the concept of a

serverless platform features automatic scaling, simplified operations, and a pay-as-you-use business model, the

containerized offers predictable performance, control of resources in fine-grained way and it is useful with long-

running workloads. This paper compares empirically and data-driven two architectures (serverless and

containerized) in terms of data engineering pipelines, namely, ETL workflows, event-driven processing, streaming

analytics, and batch jobs. Based on the public cloud benchmark datasets, academic measurement literature, Open

Telemetry traces, and published pricing models, the research conducts measurement of latency, throughput, economic

efficiency, scalability under burst workload, and the reliability of this operation. The results reveal that serverless

systems perform better in bursty and event-driven workloads that have unpredictable demand, but containerized

systems have better performance in sustained and high-throughput pipes and resource-intensive workloads. The

conclusion of the paper ended with practical recommendations to offer the builders on the best model of execution

without violating workload characteristics.

Keywords - Serverless, Python, Kubernetes, Interactive batch processing, Data pipelines, Analytics Monitoring, Cost

Engineering, Scalability.

1. Introduction
In the modern world, the most common application of

data engineering pipelines is to aid analytics, machine

learning, business intelligence, and real-time decisions being

made by organizations. These pipelines have very diverse

workloads such as extract- transform-load (ETL) jobs, event-

driven processes, batch analytics, and real-time streaming

systems. With an increase in the volume of data and

decreased latency performance, the decision of execution

architecture becomes one of the most important engineering

decisions [1]. In the last ten years, serverless computing has

become one of the interesting alternatives to the conventional

infrastructure management. AWS Lambda, Google Cloud

Functions and Azure Functions provide a pay-per-use cost

model and automatically scale systems, including a platform

such as AWS Lambda, Google cloud functions, and Azure

functions. Such attributes are what render serverless

architectures especially appealing to workloads that are

event-driving in nature and those that are irregular [2].

On the other hand, the containerized environments that

are managed through platforms like Kubernetes, Amazon

EKS, and Amazon ECS systems are the driving force of the

large-scale data platforms. Containers have predictable

behavior, guarantees resource sharing, and long process

durability which are common with developing data pipelines

[2]. Although both paradigms have been broadly adopted,

organizations still have a problem in choosing the right

model to implement in particular workloads of data

engineering. This study tries to overcome this issue because

it presents the comparison and contrast of real-life

performance measures, cost, and telemetry data, instead of

making broad theoretical comparisons [2].

2. Background and Related Work
Problem Statement:

2.1. Serverless Computing in Data Engineering

Serverless computing is a computing method that allows

developers to run code based on events without

administering the underlying servers. Serverless platforms

are typically applied in lightweight ETls, log processing, and

micro- batch analytics in the context of data engineering. The

advantages of serverless mentioned earlier in the previous

research include high speed of elasticity and lower

complexity of operations but also point to the limitations

related to cold starts, time constraints on executions, and

limited resources [3].

2.2. Containerized Forms of Data Pipelines

Containerization has emerged as the new reality of the

deployment of scalable data platforms. Kubernetes based

architectures provide a complex dependency model,

customized scheduling and high throughput workloads.

Comparative studies on Kubernetes and serverless

Harshith Kumar Pedarla / IJAIBDCMS, 7(1), 25-29, 2026

26

environments highlight the benefits of the former in terms of

the sustained workloads but remark that they come at a larger

cost [3].

2.3. Empirical Studies and Gaps

A number of scholarly works have quantified the

performance of serverless in production systems such as

distributions of latency as well as cost behaviour.

Nevertheless, there are a lot of available literature on

microbenchmarks and not end-to-end pipelines of data

engineering. The present paper is an expansion of previous

studies in that it combines several publicly available datasets

to give a comprehensive comparison [3].

3. Data Engineering Architecture Issues
With the increase in the size of data engineering pipelines,

both in terms of volume, speed and sophistication, many of

the architectural constraints become obvious. Neither a

serverless nor a containerized model of execution addresses

the issues without any special challenges which have a direct

impact on the performance, cost efficiency, scalability, and

operative reliability. These issues are fundamental in

determining the right architecture of a certain data workload

[4].

3.1. Problems of Serverless Data Engineering.

Cold start latency is one of the most difficult problems of

serverless platforms. An invocation of a function without a

warm execution environment happens for a cold start, which

initiates a runtime start, dependency loading and startup of a

container. Empirical observations continuously indicate that

cold start latency is strongly dependent on runtime leading to

Java-based functions having delays over one second, as

opposed to Node.js and Python functions which typically

take less than several hundred milliseconds. In latency

sensitive data pipelines, e.g. real-time event processing or

stream ingestion, such delays can traverse a pipeline, and

break service-level guarantees [4]. The other significant

constraint is that of time and resources required to execute it.

Serverless architecture has rigid constraints of maximum

execution time, memory, and CPU utilization. Although

suitable in short-term transformations, these limitations make

long-lasting ETL tasks difficult and have to divide the

workloads into smaller units of work and perform

orchestration layers. This means that the architecture is more

complex and harder to debug [5] The throttling of

concurrency is also an issue. Whereas serverless platforms

do not need scaling, they have account-level and regional

concurrency restrictions. Throttling may cause invocation

failures or a longer latency especially when dealing with

bursty streams of data, which is especially bad in the case of

ingestion pipelines.

3.2. Problems of Containerized Data Engineering.

Containerized environments though more flexible, have

their own challenges. The greatest one is operational

complexity. To implement and operate pipelines built using

Kubernetes, one will need skills in cluster configuration,

network, security, scaling policy, and tooling observability.

Poorly configured clusters usually cause resource contention,

ineffective scheduling or failure domino [5].The other

limitation is scaling latency. In contrast to serverless

systems, Kubernetes scaling is reliant oni) metrics collection

frequency and ii) horizontal pod autoscaler (HPA) targets

and iii) node provisioning time. Scaling delays can be

empirically observed to take tens of seconds to a few minutes

which is unacceptable in a workload with elasticity needs of

near-instant response [6]. Lastly, the issue of being cost

inefficient at times of idleness is still experienced.

Containers normally allocate resources whether they are

utilized or not, and therefore do not use the compute capacity

when the demand is low unless autoscaling is aggressive or

agency instances are deployed.

4. Information and Empirical Research Design
This study follows a strictly empirical, data-based

approach, where no theoretical modeling is done and the

emphasis made on the actual measurements, logs, and price

data. The methodology is focused on reproducibility,

transparency and practicality. Reports regarding cloud

provider benchmarks will be produced with the assistance.

4.1. Cloud Provider Benchmark Reports.

Documentation on the performance of public

performances by AWS, Google cloud, and Microsoft Azure

gives data to serve as a baseline of the analysis of serverless.

These reports will contain cold start distributions,

applications of warm execution latency percentiles, and

curves of memory-performance scaling. The study eliminates

the bias of vendors by combining the metrics of the

providers.

Fig 1: How to benchmark your cloud costs from

iTechOps

4.2. Academic datasets consisting of published logs.

Large-scale studies of the serverless workload include

peer-reviewed literature, like downloadable CSV logs of per-

invocation latency also throughput measurements and cost

metrics. These data can be compared statistically in terms of

tail latencies, concurrency behavior and execution variance

of real workloads [6].

4.3. OpenTelemetry Containerized Workloads Traces

OpenTelemetry tracing allows tracing the containerized

systems in detail. Indicators of Kubernetes load performance,

Harshith Kumar Pedarla / IJAIBDCMS, 7(1), 25-29, 2026

27

including CPU usage, memory pressure, pod startup time and

scheduling delays give us a clue about Kubernetes

performance under load. These marks are critical to the

comparison of auto-scaling behavior of serverless with

containers elasticity [6].

4.4. Modeling costs using publicly known prices

AWS lambda pricing, provisioned concurrency pricing

and EKS/ECS compute pricing are used along with actual

invocation logs to come up with realistic cost estimates. This

will provide the basis of making decisions with the real

pricing structures, based not on mere assumptions [6].

Fig 2: Pricing Modelling and Strategies from Vistage

5. Characteristics of Latency and Comparative

Analysis
Latency is a critical issue that influences the pipeline

responsiveness, system reliability and user experience. This

chapter considers both the average and tail latencies taking

into consideration the implication of these parameters in data

engineering workload [7].

5.1. Serverless Latency Profiles

Experimental data indicates that serverless functions

have very small warm-up latency, nearly 10 milliseconds on

lightweight transformations. Long-tail latency is however

caused by cold starts especially when heavier runtimes are

used. These delays vary making the prediction of latency

difficult.Containerized Latency Profiles It is important to

also acknowledge containerized latency profiles [7].

5.2. Containerized Latency Profiles

The fact that containerized latency profiles should be

mentioned must also be acknowledged. Containerized

workloads have greater levels of baseline startup latency

because of pod start up and scheduling. Nevertheless,

containers exhibit consistent and reliable execution lag in

execution, which means that they are suitable on execution

pipelines where continuous processing is required [7].

5.3. Tail Latency Implications

Latency in tailing (95th and 99th percentile) is

especially very important in data pipelines because slow

tasks are able to defer whole processes. Experiments show

that serverless systems have even greater variation in tail

latency, and containers have smaller deviation of latency

distributions after warm-up [8].

6. Throughput and Resource Utilization

Analysis
The most important performance indicators of data

engineering pipelines are throughput and resource usage,

particularly when it comes to ETL that consumes resources,

ETL at scale, streaming sources and ETL at scale.

Throughput unlike latency is concerned with the capacity of

a system to endure the consequences of processing data

continuously. In this chapter, the author empirically

compares serverless and containerised architectures based on

real world benchmark data and telemetry data [8].

6.1. Serverless Architecture Throughput Characteristics.

Serverless implement throughput (mainly) by using

horizontal scaling, i.e. by adding additional concurrent

invocations of functions as required by workload. According

to published ETL benchmarks, under moderate memory

allocations (e.g. 1024 MB), it is possible to scale to 40-50

MB of work-per-invocation at light weight transformations

running in AWS Lambda functions. This allows serverless to

be very effective with the workloads that are decomposable

to independent and parallel work which could be log

processing, record-level transformation, and fan-out ETL

stages. But empirical researches reveal a similar diminishing

curve of returns with increase in invocation concurrency.

Some of the factors that can cause this are concurrency

throttling, common underlying infrastructure, and

bottlenecks in the I/O due to interaction between functions

and centralized storage systems like object stores.

Consequently, serverless has an efficient scaling of

throughput up to a limit but it becomes less predictable in the

situation of the massively high load [8].

6.2. Characteristics of the throughput in Containerized

Architectures.

Such environments that are containerized and are

scheduled by Kubernetes tend to have dissimilar throughput

behavior. Containers the benefit of siguinuous high-

throughput processing of containers includes dedicated CPU

and memory allocation. Performance Benchmarks have

shown that a single Kubernetes pod with a single virtual

CPU is capable of more than 60 MB/s sustained ETL

workload or higher, compared to individual serverless

functions [9]. In addition, the containerized systems show a

better consistency in throughput in the long run. The

characteristics of trace with OpenTelemetry show that the

use of containers is well-defined in situations of batch

processing, stream analytics, and stateful workloads, stable

patterns of CPU usage, and minimum performance decline

under continuous load [9].

6.3. Efficiency of Resource utilization.

Efficiency in resources utilization is very different

between the two paradigms. Abstracted allocation of

resources by serverless platforms may result in inefficient

Harshith Kumar Pedarla / IJAIBDCMS, 7(1), 25-29, 2026

28

use of CPU resources because of predetermined memory to

CPU proportions. Containerized environments on the other

hand can fine-tune CPU and memory resources and achieve

greater utilization and less wastage given predictable loads

[9].

7. Cost Efficiency and Economic Trade-Off
The aspect of cost is a determining factor in the

selection of architecture especially when using a vast data

engineering solution within a limit. In this chapter, a

comparison of serverless and containerized cost models with

real pricing data and real workload traces will be developed

based on data.

7.1. Serverless Cost Characteristics

Serverless is a pricing method where charge is sent on a

pay-per-use model, based on the execution time and the

memory used. Experiments with empirical costs of serverless

architecture on AWS Lambda pricing indicate that serverless

are very cost-efficient in low-frequency, bursty workloads.

An example would have pipelines that run ad hoc processes

or daily batch processes whose costs will be minimal with

zero idle charges [10]. Nevertheless, recorded logs on

invocations have revealed that costs grow exponentially with

the constant workloads. Serverless might not only be cost-

effective in high-throughput speed scenarios, but provisioned

concurrency, a technique to alleviate cold starts, adds even

more costs, and negatively impacts the economics of

serverless [10].

7.2. Containerized Cost Characteristics.

Container applications are based on per-hour or per-

second bills of compute. Although this model is a costly one

even at idle times, it is cheaper as the utilization goes high.

The empirical evidence demonstrates that per-unit cost of

processing decreases substantially when using sustained

workloads that run on reserved or spot instances than the

ones without any servers [10].

7.3. Cost Crossover Analysis

This paper provides evident cost crossovers with the help

of real workload traces. Below some invocation threshold,

serverless architectures become cost-effective whereas

containerized solutions become cost-effective at large

workloads, i.e., at high data volumes. These results support

the value of the workload characterization as a part of

optimization of the costs [11].

8. Behaviour of Scalability and Burst Handling
One of the most commonly mentioned benefits related to

serverless computing is scalability during the unpredictable

demand. This chapter analyses behavior of scalability based

on published concurrency test and telemetry.

8.1. Serverless Burst Scaling

Serverless computing platforms exhibit a high burst scale

claim, so the studies conducted experimentally have proven

that these services can be extended between zero and

thousands of requests per second in seconds. Such a high

elasticity is especially useful with event-driven ingestion

pipelines that have to react to unforeseen traffic burst [11].

8.2. Dynamics of Kubernetes Scaling

The scaling containerized is subject to scaling based on

the horizontal pod autoscaler, the period of metrics

collection, and the period of the node provisioning. Even

high-optimized clusters have telemetry that scaling may take

tens of seconds to several minutes (thus policy-prohibited by

high responsiveness) due to bursts [11].

8.3. Engineering Implications

Serverless technology is more effective in bursts, but once

the capacity is deployed, containerized environments have a

higher degree of control and predictability. Such a difference

has been influential in terms of workload placement and

architecture [12].

9. Reliability, Observability and Operational

Overhead
To ensure big data engineering platforms, reliability and

observability are crucial. In this chapter components the

operational attributes of serverless and containerized

architecture are compared.

9.1. Reliability Characteristics Reliability The information

shows the results to be consistent and rely on various

factors.

Serverless platforms have the advantage of the

infrastructure providers and the probability of node-level

failures is minimized. Nonetheless, the failure diagnosis may

be difficult when one has limited control over the execution

environments. Containerized systems on the contrary have

higher transparency and customization but need to be

configured carefully to prevent cascading failures [12].

Fig 3: Characteristics of Reliable Data from Intellspot

9.2. The observability and monitoring are noted

Limitations The low-level performance problems

typically remain concealed by measurements and logs

offered by multiple providers, making serverless

observability typically limited to these results. With the help

of OpenTelemetry, containerized environments may also be

Harshith Kumar Pedarla / IJAIBDCMS, 7(1), 25-29, 2026

29

thoroughly monitored, the CPU, memory, network, and

scheduling behavior could be monitored and helped to

perform more advanced performance tuning.

9.3. Operational Overhead

Serverless architectures also present a major trade off

between the amount of DevOps overhead, such that smaller

teams are now able to handle complex pipelines.

Containerized systems have higher operational costs, but

have more flexibility and control, and would be desirable in

workloads of mission critical importance [12].

10. Case Study - Comparative ETL Pipeline

Execution
The chapter summarizes the empirical data in the form

of a comparative case study of the implemented ETL

pipeline that processes data with the usage of AWS Lambda

and Amazon EKS. The study determines the performance,

cost, and reliability in different load settings of published

datasets of ETL workloads. The experiment results illustrate

that the serverless implementation is better when the

workload is sporadic with low overheads on operation but

the containerized pipeline is better when throughput is

required to be at high levels and operation costs need to be

low. The case study sheds light on the trade-offs that can be

implemented in data engineering teams in the real world

[13].

11. Discussion and Architectural

Recommendations
This research has shown that architecture selection

ought to be a workload-based selection, but not an ideology-

based selection. Serverless computing is beneficial as it

addresses bursty and low-duty-cycle containers, whereas

containerized computing is more suitable because it takes

place on pipelines continuously with a high resource

demand. The hybrid technologies, the use of serverless

ingestion by using containerized processing backends,

become a promising solution, which would utilize the

benefits of both paradigms [14].

12. Conclusion, Future Reflection Direction
This paper gives an in-depth, empirical data comparing

serversless and containerized models of data engineering

pipelines. Basing the analysis on practical references, the

telemetry data, and pricing models provide practical

information to both practitioners and researchers, as the

research is grounded. Future studies are required to

investigate hybrid implementation models, better scaling and

autoscaling frameworks and benchmarking frameworks

standardization of doing data engineering tasks. The

architectural assessment based on data will also be a

necessity in creating effective and scalable data platforms as

cloud platforms expand [15].

References
1. Akkus, I. (2021). Serverless computing: Architectural

challenges and solutions. IEEE Internet Computing.

2. Baldini, I. (2021). Serverless computing: Current trends

and open problems. ACM Computing Surveys.

3. Eismann, S. (2021). Serverless in the wild:

Characterizing and optimizing the serverless workload.

USENIX ATC.

4. Jonas, E. (2021). Cloud programming simplified: A

Berkeley view on serverless computing. arXiv.

5. Lloyd, W. (2021). Serverless computing: An

investigation of factors influencing cold start latency.

IEEE Cloud.

6. McGrath, G., & Brenner, P. (2022). Serverless

computing: Design, implementation, and performance.

Future Generation Computer Systems.

7. Shahrad, M. (2022). Serverless computing versus

containers: Performance and cost trade-offs. IEEE

Transactions on Cloud Computing.

8. Spillner, J. (2022). Benchmarking FaaS platforms.

Journal of Cloud Computing.

9. Sun, S., Qin, M., Zhang, W., Xia, H., & Zong, C.

(2023). TradeMaster: A holistic quantitative trading

platform empowered by reinforcement learning.

NeurIPS Datasets and Benchmarks.

10. Wang, L. (2023). A large-scale study of serverless cold

starts. ACM SIGMETRICS.

11. Zhang, Q. (2023). Characterizing serverless workloads

for cloud efficiency. IEEE TPDS.

12. Gao, P. (2024). Serverless vs. Kubernetes for data-

intensive pipelines. Future Generation Computer

Systems.

13. Probierz, A. (2024). Benchmarking cloud-native

execution platforms. Machine Learning Journal.

14. Lin, X. (2024). Observability-driven performance

analysis of Kubernetes workloads. IEEE Software.

15. Chen, Y. (2025). Cost-aware scheduling for serverless

and containerized workloads. IEEE Transactions on

Services Computing.

