‘ﬁ) e

N

R
2

TJAIBDCMS JOURNAL

International Journal of Al, BigData, Computational and Management Studies
Noble Scholar Research Group | Volume 7, Issue 1, PP 25-29, 2026
ISSN: 3050-9416 | https://doi.org/10.63282/3050-9416.1JAIBDCMS-V7I1P103

Original Article

The Future of Serverless Architectures in Data
Engineering

Received On: 18/11/2025

Revised On: 20/12/2025

Harshith Kumar Pedarla
Seattle, USA.

Accepted On: 26/12/2025 Published On: 08/01/2026

Abstract - With every increase in the complexity and volume of data engineering workloads, organizations face highly
important architectural choices to make in terms of compute execution environments. The serverless computing
platforms and containerized orchestration systems presented by two dominant paradigms provide different favourable
measurements in terms of performance, cost, scalability, and operating overheads. Although the concept of a
serverless platform features automatic scaling, simplified operations, and a pay-as-you-use business model, the
containerized offers predictable performance, control of resources in fine-grained way and it is useful with long-
running workloads. This paper compares empirically and data-driven two architectures (serverless and
containerized) in terms of data engineering pipelines, namely, ETL workflows, event-driven processing, streaming
analytics, and batch jobs. Based on the public cloud benchmark datasets, academic measurement literature, Open
Telemetry traces, and published pricing models, the research conducts measurement of latency, throughput, economic
efficiency, scalability under burst workload, and the reliability of this operation. The results reveal that serverless
systems perform better in bursty and event-driven workloads that have unpredictable demand, but containerized
systems have better performance in sustained and high-throughput pipes and resource-intensive workloads. The
conclusion of the paper ended with practical recommendations to offer the builders on the best model of execution

without violating workload characteristics.

Keywords - Serverless, Python, Kubernetes, Interactive batch processing, Data pipelines, Analytics Monitoring, Cost

Engineering, Scalability.

1. Introduction

In the modern world, the most common application of
data engineering pipelines is to aid analytics, machine
learning, business intelligence, and real-time decisions being
made by organizations. These pipelines have very diverse
workloads such as extract- transform-load (ETL) jobs, event-
driven processes, batch analytics, and real-time streaming
systems. With an increase in the volume of data and
decreased latency performance, the decision of execution
architecture becomes one of the most important engineering
decisions [1]. In the last ten years, serverless computing has
become one of the interesting alternatives to the conventional
infrastructure management. AWS Lambda, Google Cloud
Functions and Azure Functions provide a pay-per-use cost
model and automatically scale systems, including a platform
such as AWS Lambda, Google cloud functions, and Azure
functions. Such attributes are what render serverless
architectures especially appealing to workloads that are
event-driving in nature and those that are irregular [2].

On the other hand, the containerized environments that
are managed through platforms like Kubernetes, Amazon
EKS, and Amazon ECS systems are the driving force of the
large-scale data platforms. Containers have predictable
behavior, guarantees resource sharing, and long process
durability which are common with developing data pipelines
[2]. Although both paradigms have been broadly adopted,

organizations still have a problem in choosing the right
model to implement in particular workloads of data
engineering. This study tries to overcome this issue because
it presents the comparison and contrast of real-life
performance measures, cost, and telemetry data, instead of
making broad theoretical comparisons [2].

2. Background and Related Work
Problem Statement:
2.1. Serverless Computing in Data Engineering

Serverless computing is a computing method that allows
developers to run code based on events without
administering the underlying servers. Serverless platforms
are typically applied in lightweight ETIs, log processing, and
micro- batch analytics in the context of data engineering. The
advantages of serverless mentioned earlier in the previous
research include high speed of elasticity and lower
complexity of operations but also point to the limitations
related to cold starts, time constraints on executions, and
limited resources [3].

2.2. Containerized Forms of Data Pipelines
Containerization has emerged as the new reality of the
deployment of scalable data platforms. Kubernetes based
architectures provide a complex dependency model,
customized scheduling and high throughput workloads.
Comparative studies on Kubernetes and serverless

Harshith Kumar Pedarla / IJAIBDCMS, 7(1), 25-29, 2026

environments highlight the benefits of the former in terms of
the sustained workloads but remark that they come at a larger
cost [3].

2.3. Empirical Studies and Gaps

A number of scholarly works have quantified the
performance of serverless in production systems such as
distributions of latency as well as cost behaviour.
Nevertheless, there are a lot of available literature on
microbenchmarks and not end-to-end pipelines of data
engineering. The present paper is an expansion of previous
studies in that it combines several publicly available datasets
to give a comprehensive comparison [3].

3. Data Engineering Architecture Issues

With the increase in the size of data engineering pipelines,
both in terms of volume, speed and sophistication, many of
the architectural constraints become obvious. Neither a
serverless nor a containerized model of execution addresses
the issues without any special challenges which have a direct
impact on the performance, cost efficiency, scalability, and
operative reliability. These issues are fundamental in
determining the right architecture of a certain data workload

[4].

3.1. Problems of Serverless Data Engineering.

Cold start latency is one of the most difficult problems of
serverless platforms. An invocation of a function without a
warm execution environment happens for a cold start, which
initiates a runtime start, dependency loading and startup of a
container. Empirical observations continuously indicate that
cold start latency is strongly dependent on runtime leading to
Java-based functions having delays over one second, as
opposed to Node.js and Python functions which typically
take less than several hundred milliseconds. In latency
sensitive data pipelines, e.g. real-time event processing or
stream ingestion, such delays can traverse a pipeline, and
break service-level guarantees [4]. The other significant
constraint is that of time and resources required to execute it.
Serverless architecture has rigid constraints of maximum
execution time, memory, and CPU utilization. Although
suitable in short-term transformations, these limitations make
long-lasting ETL tasks difficult and have to divide the
workloads into smaller units of work and perform
orchestration layers. This means that the architecture is more
complex and harder to debug [5] The throttling of
concurrency is also an issue. Whereas serverless platforms
do not need scaling, they have account-level and regional
concurrency restrictions. Throttling may cause invocation
failures or a longer latency especially when dealing with
bursty streams of data, which is especially bad in the case of
ingestion pipelines.

3.2. Problems of Containerized Data Engineering.
Containerized environments though more flexible, have
their own challenges. The greatest one is operational
complexity. To implement and operate pipelines built using
Kubernetes, one will need skills in cluster configuration,
network, security, scaling policy, and tooling observability.
Poorly configured clusters usually cause resource contention,

26

ineffective scheduling or failure domino [5].The other
limitation is scaling latency. In contrast to serverless
systems, Kubernetes scaling is reliant oni) metrics collection
frequency and ii) horizontal pod autoscaler (HPA) targets
and iii) node provisioning time. Scaling delays can be
empirically observed to take tens of seconds to a few minutes
which is unacceptable in a workload with elasticity needs of
near-instant response [6]. Lastly, the issue of being cost
inefficient at times of idleness is still experienced.
Containers normally allocate resources whether they are
utilized or not, and therefore do not use the compute capacity
when the demand is low unless autoscaling is aggressive or
agency instances are deployed.

4. Information and Empirical Research Design
This study follows a strictly empirical, data-based
approach, where no theoretical modeling is done and the
emphasis made on the actual measurements, logs, and price
data. The methodology is focused on reproducibility,
transparency and practicality. Reports regarding cloud
provider benchmarks will be produced with the assistance.

4.1. Cloud Provider Benchmark Reports.

Documentation on the performance of public
performances by AWS, Google cloud, and Microsoft Azure
gives data to serve as a baseline of the analysis of serverless.
These reports will contain cold start distributions,
applications of warm execution latency percentiles, and
curves of memory-performance scaling. The study eliminates
the bias of vendors by combining the metrics of the
providers.

(}l“ech (0

HOW TO BENCHMARK YOUR
CLOUD COSTS

\\‘ Analyze and

Decide Objectives
\ /‘ Compare

| Identify Chances of
| oOptimization and
Impliment

Getting the Right [5
Data %

\ Monitor the Changes
| and be Ready to
/ Optimize

Select Benchmarks |

Fig 1: How to benchmark your cloud costs from
iTechOps

4.2. Academic datasets consisting of published logs.

Large-scale studies of the serverless workload include
peer-reviewed literature, like downloadable CSV logs of per-
invocation latency also throughput measurements and cost
metrics. These data can be compared statistically in terms of
tail latencies, concurrency behavior and execution variance
of real workloads [6].

4.3. OpenTelemetry Containerized Workloads Traces
OpenTelemetry tracing allows tracing the containerized
systems in detail. Indicators of Kubernetes load performance,

Harshith Kumar Pedarla / IJAIBDCMS, 7(1), 25-29, 2026

including CPU usage, memory pressure, pod startup time and
scheduling delays give us a clue about Kubernetes
performance under load. These marks are critical to the
comparison of auto-scaling behavior of serverless with
containers elasticity [6].

4.4. Modeling costs using publicly known prices

AWS lambda pricing, provisioned concurrency pricing
and EKS/ECS compute pricing are used along with actual
invocation logs to come up with realistic cost estimates. This
will provide the basis of making decisions with the real
pricing structures, based not on mere assumptions [6].

Cost-Plus Pricing

Calculating production costs and adding a desired profit
margin to set a product's price

Your costs Your price

Fig 2: Pricing Modelling and Strategies from Vistage

5. Characteristics of Latency and Comparative
Analysis

Latency is a critical issue that influences the pipeline
responsiveness, system reliability and user experience. This
chapter considers both the average and tail latencies taking
into consideration the implication of these parameters in data
engineering workload [7].

5.1. Serverless Latency Profiles

Experimental data indicates that serverless functions
have very small warm-up latency, nearly 10 milliseconds on
lightweight transformations. Long-tail latency is however
caused by cold starts especially when heavier runtimes are
used. These delays vary making the prediction of latency
difficult.Containerized Latency Profiles It is important to
also acknowledge containerized latency profiles [7].

5.2. Containerized Latency Profiles

The fact that containerized latency profiles should be
mentioned must also be acknowledged. Containerized
workloads have greater levels of baseline startup latency
because of pod start up and scheduling. Nevertheless,
containers exhibit consistent and reliable execution lag in
execution, which means that they are suitable on execution
pipelines where continuous processing is required [7].

5.3. Tail Latency Implications
Latency in tailing (95th and 99th percentile) is
especially very important in data pipelines because slow

27

tasks are able to defer whole processes. Experiments show
that serverless systems have even greater variation in tail
latency, and containers have smaller deviation of latency
distributions after warm-up [8].

6. Throughput and Resource Utilization
Analysis

The most important performance indicators of data
engineering pipelines are throughput and resource usage,
particularly when it comes to ETL that consumes resources,
ETL at scale, streaming sources and ETL at scale.
Throughput unlike latency is concerned with the capacity of
a system to endure the consequences of processing data
continuously. In this chapter, the author empirically
compares serverless and containerised architectures based on
real world benchmark data and telemetry data [8].

6.1. Serverless Architecture Throughput Characteristics.

Serverless implement throughput (mainly) by using
horizontal scaling, i.e. by adding additional concurrent
invocations of functions as required by workload. According
to published ETL benchmarks, under moderate memory
allocations (e.g. 1024 MB), it is possible to scale to 40-50
MB of work-per-invocation at light weight transformations
running in AWS Lambda functions. This allows serverless to
be very effective with the workloads that are decomposable
to independent and parallel work which could be log
processing, record-level transformation, and fan-out ETL
stages. But empirical researches reveal a similar diminishing
curve of returns with increase in invocation concurrency.
Some of the factors that can cause this are concurrency
throttling, common underlying infrastructure, and
bottlenecks in the I/O due to interaction between functions
and centralized storage systems like object stores.
Consequently, serverless has an efficient scaling of
throughput up to a limit but it becomes less predictable in the
situation of the massively high load [8].

6.2. Characteristics of the throughput in Containerized
Architectures.

Such environments that are containerized and are
scheduled by Kubernetes tend to have dissimilar throughput
behavior. Containers the benefit of siguinuous high-
throughput processing of containers includes dedicated CPU
and memory allocation. Performance Benchmarks have
shown that a single Kubernetes pod with a single virtual
CPU is capable of more than 60 MB/s sustained ETL
workload or higher, compared to individual serverless
functions [9]. In addition, the containerized systems show a
better consistency in throughput in the long run. The
characteristics of trace with OpenTelemetry show that the
use of containers is well-defined in situations of batch
processing, stream analytics, and stateful workloads, stable
patterns of CPU usage, and minimum performance decline
under continuous load [9].

6.3. Efficiency of Resource utilization.

Efficiency in resources utilization is very different
between the two paradigms. Abstracted allocation of
resources by serverless platforms may result in inefficient

Harshith Kumar Pedarla / IJAIBDCMS, 7(1), 25-29, 2026

use of CPU resources because of predetermined memory to
CPU proportions. Containerized environments on the other
hand can fine-tune CPU and memory resources and achieve
greater utilization and less wastage given predictable loads

[

7. Cost Efficiency and Economic Trade-Off

The aspect of cost is a determining factor in the
selection of architecture especially when using a vast data
engineering solution within a limit. In this chapter, a
comparison of serverless and containerized cost models with
real pricing data and real workload traces will be developed
based on data.

7.1. Serverless Cost Characteristics

Serverless is a pricing method where charge is sent on a
pay-per-use model, based on the execution time and the
memory used. Experiments with empirical costs of serverless
architecture on AWS Lambda pricing indicate that serverless
are very cost-efficient in low-frequency, bursty workloads.
An example would have pipelines that run ad hoc processes
or daily batch processes whose costs will be minimal with
zero idle charges [10]. Nevertheless, recorded logs on
invocations have revealed that costs grow exponentially with
the constant workloads. Serverless might not only be cost-
effective in high-throughput speed scenarios, but provisioned
concurrency, a technique to alleviate cold starts, adds even
more costs, and negatively impacts the economics of
serverless [10].

7.2. Containerized Cost Characteristics.

Container applications are based on per-hour or per-
second bills of compute. Although this model is a costly one
even at idle times, it is cheaper as the utilization goes high.
The empirical evidence demonstrates that per-unit cost of
processing decreases substantially when using sustained
workloads that run on reserved or spot instances than the
ones without any servers [10].

7.3. Cost Crossover Analysis

This paper provides evident cost crossovers with the help
of real workload traces. Below some invocation threshold,
serverless architectures become cost-effective whereas
containerized solutions become cost-effective at large
workloads, i.e., at high data volumes. These results support
the value of the workload characterization as a part of
optimization of the costs [11].

8. Behaviour of Scalability and Burst Handling

One of the most commonly mentioned benefits related to
serverless computing is scalability during the unpredictable
demand. This chapter analyses behavior of scalability based
on published concurrency test and telemetry.

8.1. Serverless Burst Scaling

Serverless computing platforms exhibit a high burst scale
claim, so the studies conducted experimentally have proven
that these services can be extended between zero and
thousands of requests per second in seconds. Such a high

28

elasticity is especially useful with event-driven ingestion
pipelines that have to react to unforeseen traffic burst [11].

8.2. Dynamics of Kubernetes Scaling

The scaling containerized is subject to scaling based on
the horizontal pod autoscaler, the period of metrics
collection, and the period of the node provisioning. Even
high-optimized clusters have telemetry that scaling may take
tens of seconds to several minutes (thus policy-prohibited by
high responsiveness) due to bursts [11].

8.3. Engineering Implications

Serverless technology is more effective in bursts, but once
the capacity is deployed, containerized environments have a
higher degree of control and predictability. Such a difference
has been influential in terms of workload placement and
architecture [12].

9. Reliability, Observability and Operational

Overhead

To ensure big data engineering platforms, reliability and
observability are crucial. In this chapter components the
operational attributes of serverless and containerized
architecture are compared.

9.1. Reliability Characteristics Reliability The information
shows the results to be consistent and rely on various
factors.

Serverless platforms have the advantage of the
infrastructure providers and the probability of node-level
failures is minimized. Nonetheless, the failure diagnosis may
be difficult when one has limited control over the execution
environments. Containerized systems on the contrary have
higher transparency and customization but need to be
configured carefully to prevent cascading failures [12].

Accuracy Consistency Completeness
() &
L ‘ e s " §

Timeliness Relevance Validity

Fig 3: Characteristics of Reliable Data from Intellspot

9.2. The observability and monitoring are noted

Limitations The low-level performance problems
typically remain concealed by measurements and logs
offered by multiple providers, making serverless
observability typically limited to these results. With the help
of OpenTelemetry, containerized environments may also be

Harshith Kumar Pedarla / IJAIBDCMS, 7(1), 25-29, 2026

thoroughly monitored, the CPU, memory, network, and
scheduling behavior could be monitored and helped to
perform more advanced performance tuning.

9.3. Operational Overhead

Serverless architectures also present a major trade off
between the amount of DevOps overhead, such that smaller
teams are now able to handle complex pipelines.
Containerized systems have higher operational costs, but
have more flexibility and control, and would be desirable in
workloads of mission critical importance [12].

10. Case Study - Comparative ETL Pipeline

Execution

The chapter summarizes the empirical data in the form
of a comparative case study of the implemented ETL
pipeline that processes data with the usage of AWS Lambda
and Amazon EKS. The study determines the performance,
cost, and reliability in different load settings of published
datasets of ETL workloads. The experiment results illustrate
that the serverless implementation is better when the
workload is sporadic with low overheads on operation but
the containerized pipeline is better when throughput is
required to be at high levels and operation costs need to be
low. The case study sheds light on the trade-offs that can be
implemented in data engineering teams in the real world
[13].

11. Discussion and Architectural

Recommendations

This research has shown that architecture selection
ought to be a workload-based selection, but not an ideology-
based selection. Serverless computing is beneficial as it
addresses bursty and low-duty-cycle containers, whereas
containerized computing is more suitable because it takes
place on pipelines continuously with a high resource
demand. The hybrid technologies, the use of serverless
ingestion by using containerized processing backends,
become a promising solution, which would utilize the
benefits of both paradigms [14].

12. Conclusion, Future Reflection Direction

This paper gives an in-depth, empirical data comparing
serversless and containerized models of data engineering
pipelines. Basing the analysis on practical references, the
telemetry data, and pricing models provide practical
information to both practitioners and researchers, as the

29

research is grounded. Future studies are required to
investigate hybrid implementation models, better scaling and
autoscaling frameworks and benchmarking frameworks
standardization of doing data engineering tasks. The
architectural assessment based on data will also be a
necessity in creating effective and scalable data platforms as
cloud platforms expand [15].

References

1. Akkus, I. (2021). Serverless computing: Architectural
challenges and solutions. IEEE Internet Computing.
Baldini, I. (2021). Serverless computing: Current trends
and open problems. ACM Computing Surveys.

Eismann, S. (2021). Serverless in the wild:
Characterizing and optimizing the serverless workload.
USENIX ATC.

Jonas, E. (2021). Cloud programming simplified: A
Berkeley view on serverless computing. arXiv.

Lloyd, W. (2021). Serverless computing: An
investigation of factors influencing cold start latency.
IEEE Cloud.

McGrath, G., & Brenner, P. (2022). Serverless
computing: Design, implementation, and performance.
Future Generation Computer Systems.

Shahrad, M. (2022). Serverless computing versus
containers: Performance and cost trade-offs. IEEE
Transactions on Cloud Computing.

Spillner, J. (2022). Benchmarking FaaS platforms.
Journal of Cloud Computing.

Sun, S., Qin, M., Zhang, W., Xia, H.,, & Zong, C.
(2023). TradeMaster: A holistic quantitative trading
platform empowered by reinforcement learning.
NeurlIPS Datasets and Benchmarks.

Wang, L. (2023). A large-scale study of serverless cold
starts. ACM SIGMETRICS.

Zhang, Q. (2023). Characterizing serverless workloads
for cloud efficiency. IEEE TPDS.

Gao, P. (2024). Serverless vs. Kubernetes for data-
intensive pipelines. Future Generation Computer
Systems.

Probierz, A. (2024). Benchmarking cloud-native
execution platforms. Machine Learning Journal.

Lin, X. (2024). Observability-driven performance
analysis of Kubernetes workloads. IEEE Software.

Chen, Y. (2025). Cost-aware scheduling for serverless
and containerized workloads. IEEE Transactions on
Services Computing.

2.

3.

10.

11.

12.

13.

14.

15.

