
International Journal of AI, Big Data, Computational and Management Studies 

Noble Scholar Research Group | Volume 3, Issue 2, PP. 8-20, 2020 

ISSN: 3050-9416 | https://doi.org/10.63282/30509416/IJAIBDCMS-V3I1P102 

 

8 

Enhancing IoT Data Processing and Streaming at the 

Edge: A Comparative Analysis of AWS Greengrass 

Architectures with Message Brokering and Stream 

Management 
Prof. Maxime Leclerc, 

University of Montreal, AI & Computational Neuroscience Lab, Canada. 

 

Abstract: The Internet of Things (IoT) has revolutionized various industries by enabling the connection and communication of 

billions of devices. However, the increasing volume and velocity of IoT data pose significant challenges in terms of data 

processing and management. Edge computing, which brings computation and data storage closer to the source of data, offers a 

promising solution to these challenges. AWS Greengrass, a key edge computing service provided by Amazon Web Services 

(AWS), facilitates local processing and communication of IoT devices. This paper presents a comprehensive comparative 

analysis of AWS Greengrass architectures, focusing on message brokering and stream management. We evaluate the 

performance, scalability, and efficiency of different configurations of AWS Greengrass, including the use of MQTT brokers 

and stream managers. The results provide insights into the optimal deployment strategies for enhancing IoT data processing 

and streaming at the edge. 
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1. Introduction 
The Internet of Things (IoT) has fundamentally transformed the way we interact with and utilize technology, ushering in an era 

where everyday devices are not only connected to the internet but also capable of communicating with one another. This 

interconnected network extends far beyond smartphones and computers to include a wide array of devices such as smart home 

appliances, wearables, industrial sensors, and even vehicles. The result is a highly dynamic and interactive environment that 

can enhance efficiency, convenience, and safety in numerous aspects of daily life and business operations. 

 

One of the most significant impacts of IoT is the exponential increase in data generation. Each connected device contributes to 

a massive influx of data, which must be processed, analyzed, and acted upon almost instantaneously to realize the full potential 

of IoT applications. For instance, in smart manufacturing, real-time data from sensors can help optimize production processes 

and predict equipment failures, while in smart cities, data from traffic cameras and environmental sensors can be used to 

manage traffic flow and monitor air quality. 

 

However, traditional cloud computing models, which rely on centralized data centers to process and store information, often 

struggle to keep up with the high volume and velocity of data produced by IoT devices. Sending all this data to a remote cloud 

for processing can result in significant latency, which is the time delay between data generation and the execution of a 

response. This delay can be problematic in scenarios that require immediate action, such as autonomous driving or remote 

patient monitoring, where even a slight delay can have serious consequences. 

 

Moreover, the sheer volume of data can overwhelm network bandwidth, leading to congestion and increased operational costs. 

To address these challenges, edge computing has emerged as a complementary approach to cloud computing. Edge computing 

involves processing data closer to where it is generated, using devices such as edge servers, gateways, and even the IoT devices 

themselves. By reducing the distance data must travel, edge computing minimizes latency and ensures that critical applications 

can operate in real-time. Additionally, it helps to alleviate the burden on central cloud resources, making the overall system 

more efficient and scalable. 
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2. Overview of AWS Greengrass and Edge Computing 
2.1 Edge Computing 

Edge computing is a distributed computing paradigm that processes data closer to its source rather than relying on centralized 

cloud infrastructure. This approach significantly reduces latency and bandwidth usage by minimizing the distance data needs to 

travel. In traditional cloud computing, data is transmitted to remote servers for processing, which can introduce delays and 

increase network congestion. Edge computing addresses these challenges by bringing computation and storage resources to the 

edge of the network, closer to the devices generating the data. This not only enhances the speed of data processing but also 

improves the overall reliability of the system by enabling real-time decision-making. 

 

The benefits of edge computing are particularly evident in Internet of Things (IoT) applications, where large volumes of data 

are generated continuously. In industrial IoT scenarios, for example, sensors and devices produce critical data that needs to be 

processed instantly to ensure safety and operational efficiency. Edge computing facilitates real-time analytics and event 

processing, enabling organizations to respond to events with minimal latency. Additionally, it reduces the dependency on 

continuous cloud connectivity, making systems more resilient to network disruptions. 

 

Security and privacy are also enhanced through edge computing, as sensitive data can be processed locally without being 

transmitted to the cloud. This approach aligns with regulatory requirements for data sovereignty and privacy, particularly in 

industries such as healthcare and finance. Moreover, edge computing optimizes bandwidth usage by filtering and aggregating 

data locally, transmitting only relevant information to the cloud for further analysis and storage. This results in cost savings and 

improved network efficiency, making edge computing an attractive solution for scalable IoT deployments. 

 

Overall, edge computing revolutionizes the way data is processed by enabling localized, real-time computation. It enhances 

system performance, security, and scalability while reducing operational costs. As IoT continues to grow, edge computing is 

expected to play an increasingly crucial role in enabling smart, connected environments. Its integration with cloud computing 

forms a hybrid model that combines the best of both worlds, offering flexibility and efficiency for modern digital 

infrastructures. 

 

2.2 AWS Greengrass 

AWS Greengrass is a powerful service designed to extend AWS capabilities to edge devices, enabling localized data 

processing and communication while maintaining seamless integration with the cloud. It allows developers to deploy Lambda 

functions, Docker containers, and other compute resources directly on edge devices, enabling low-latency data processing and 

real-time decision-making. By supporting local execution, AWS Greengrass reduces cloud dependency and enhances system 

resilience, making it ideal for applications requiring high availability and quick response times. 

 

One of the standout features of AWS Greengrass is its message brokering capability. Utilizing MQTT (Message Queuing 

Telemetry Transport), Greengrass facilitates efficient and secure communication between local devices and cloud services. 

This message brokering is particularly useful for IoT environments where devices need to exchange data frequently and 

reliably. Additionally, Greengrass supports local data caching and synchronization, ensuring that devices continue to operate 

smoothly even during intermittent cloud connectivity. 

 

AWS Greengrass also includes advanced stream management features, allowing data streams to be processed and analyzed 

locally. This capability is crucial for scenarios involving high-frequency data generation, such as industrial automation and 

real-time monitoring systems. By processing streams locally, Greengrass reduces the amount of data sent to the cloud, 

optimizing bandwidth usage and reducing cloud storage costs. This makes it a cost-effective solution for large-scale IoT 

deployments. 

 

Security is a core component of AWS Greengrass, with built-in encryption and authentication mechanisms to ensure secure 

communication and data storage. It supports fine-grained access control, enabling developers to define and manage 

permissions for devices and applications. Greengrass also includes device shadowing, a feature that synchronizes device state 

between the edge and cloud, ensuring consistent device management and control. This capability is particularly useful in 

disconnected environments, where device state changes can be queued and synchronized once connectivity is restored. 

 

2.3 Key Components of AWS Greengrass 

AWS Greengrass consists of several key components that work together to deliver a flexible and scalable edge computing 

solution. At the heart of the system is the Greengrass Core, which runs on edge devices and manages local compute, 

communication, and device state synchronization. The Greengrass Core acts as a runtime environment for deploying and 
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executing Lambda functions and Docker containers, enabling local processing and event handling. It also facilitates 

communication with cloud services, ensuring seamless integration and data flow. 

 

Lambda Functions play a crucial role in AWS Greengrass by providing serverless compute capabilities at the edge. These 

functions can be triggered by events such as device status changes, sensor data updates, or custom application logic. By 

running locally, Lambda functions enable real-time processing and decision-making without the need for cloud interaction. 

This enhances system responsiveness and reduces latency, making it suitable for mission-critical applications. 

 

The MQTT Broker in Greengrass handles local and cloud communication using the MQTT protocol. It facilitates efficient and 

secure messaging between devices, applications, and cloud services. This message brokering capability is essential for IoT 

ecosystems where reliable data exchange is critical for system functionality. It also supports local message routing, reducing 

network traffic and ensuring that critical messages are delivered even when cloud connectivity is unstable. 

 

Stream Manager is another vital component that manages data streams locally. It provides APIs for data collection, processing, 

and storage at the edge, enabling real-time analytics and event processing. Stream Manager also allows for data batching and 

asynchronous transmission to the cloud, optimizing network usage and cloud storage costs. This component is particularly 

useful for high-frequency data generation scenarios, such as industrial monitoring and predictive maintenance. 

 

Finally, the Device Shadow feature in AWS Greengrass enables state synchronization between devices and the cloud. It 

maintains a virtual representation of the device's state, allowing for consistent management and control across distributed 

environments. This feature ensures that devices can be monitored and managed even during connectivity disruptions, 

enhancing system reliability and availability. With its comprehensive set of components, AWS Greengrass provides a powerful 

and flexible framework for building edge computing solutions tailored to a wide range of IoT applications. 

 

3. Message Brokering in AWS Greengrass 
3.1 Introduction to MQTT 

Message Queuing Telemetry Transport (MQTT) is a lightweight messaging protocol designed specifically for Internet of 

Things (IoT) applications and resource-constrained devices. It follows a publish-subscribe model, where clients publish 

messages to a central broker, which then distributes these messages to subscribers. This architecture decouples the producers 

and consumers of information, allowing for scalable and flexible communication in IoT ecosystems. MQTT is particularly 

suitable for networks with low bandwidth and high latency, as it uses minimal overhead and supports efficient message 

delivery. 

 

One of the key features of MQTT is its simplicity and efficiency in managing communication between devices. It uses a client-

server model where devices (clients) can either publish messages to specific topics or subscribe to receive messages from those 

topics. The central broker manages all message routing and distribution, ensuring that only relevant devices receive the 

information. This publish-subscribe mechanism enhances scalability by allowing multiple devices to communicate without 

establishing direct connections with each other. It also simplifies the implementation of complex IoT systems by organizing 

communication through topic hierarchies. 

 

The protocol is designed to be lightweight, making it ideal for resource-constrained devices such as sensors, actuators, and 

microcontrollers. MQTT achieves this by maintaining small message headers and supporting three Quality of Service (QoS) 

levels. These QoS levels provide different guarantees for message delivery, ranging from "at most once" (no acknowledgment 

required) to "exactly once" (ensured message delivery without duplication). This flexibility allows developers to balance 

reliability and performance according to the requirements of their IoT applications. 

 

Security and reliability are fundamental aspects of MQTT. It supports Transport Layer Security (TLS) for encrypted 

communication and provides authentication mechanisms using client certificates and credentials. Additionally, MQTT brokers 

can retain messages for specified durations, ensuring reliable communication even when subscribers are temporarily offline. 

This feature is particularly useful for IoT applications that require consistent state updates or event notifications. Overall, 

MQTT's lightweight design, scalability, and reliability make it an ideal messaging protocol for diverse IoT use cases. 

 

3.2 MQTT in AWS Greengrass 

AWS Greengrass integrates MQTT as its core messaging protocol to enable efficient communication between edge devices and 

the cloud. The MQTT broker within AWS Greengrass facilitates both local and cloud communication, allowing devices to 

exchange messages securely and reliably. This architecture is particularly beneficial for IoT environments where devices need 
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to operate autonomously with intermittent cloud connectivity. By enabling local communication, Greengrass reduces latency 

and ensures continuous operation even during network disruptions. 

 

The MQTT broker in AWS Greengrass supports local communication, enabling devices within the same network to publish 

and subscribe to messages without sending data to the cloud. This local message brokering reduces bandwidth usage and 

minimizes latency, enhancing real-time decision-making and responsiveness. Additionally, local communication enhances 

security by keeping sensitive data within the edge environment, reducing exposure to external threats. This capability is 

especially valuable in industrial automation and healthcare IoT applications where data privacy and low latency are critical. 

 

Cloud communication is also seamlessly integrated into the MQTT broker, allowing devices to send and receive messages to 

and from AWS services. This enables cloud-based data processing, storage, and analytics, leveraging the full power of the 

AWS ecosystem. AWS IoT Core acts as the central hub for cloud communication, connecting devices to services like Amazon 

Kinesis Data Streams for real-time data analytics and Amazon S3 for scalable storage. This hybrid architecture balances local 

processing with cloud capabilities, providing a flexible and scalable IoT solution. 

 

Message retention is another key feature of the MQTT broker in AWS Greengrass. It ensures reliable communication by 

retaining messages for a specified period, allowing devices to receive missed updates when they reconnect. This feature 

enhances system resilience and consistency, particularly in environments with unstable network connectivity. Additionally, the 

MQTT broker supports various Quality of Service (QoS) levels, ensuring reliable message delivery according to the 

application’s requirements. These features make AWS Greengrass an efficient and robust platform for building scalable IoT 

solutions. 

 

3.3 MQTT Broker Configuration 

Configuring the MQTT broker in AWS Greengrass is crucial for optimizing performance, security, and reliability. One of the 

primary configuration parameters is the port, which determines the communication channel for devices to connect to the 

broker. By default, MQTT uses port 1883 for unencrypted communication and port 8883 for secure communication using TLS. 

Administrators can customize these ports to enhance security or comply with network policies. Proper port configuration also 

helps in managing network traffic and avoiding conflicts with other services. 

 

Another important configuration aspect is the Quality of Service (QoS) levels, which define the reliability of message delivery. 

MQTT supports three QoS levels: 0 (at most once), 1 (at least once), and 2 (exactly once). These levels allow developers to 

balance performance and reliability based on application requirements. For instance, QoS level 0 is suitable for non-critical 

messages where occasional loss is acceptable, while QoS level 2 is used for critical applications that require guaranteed 

delivery without duplication. Proper QoS configuration ensures optimal resource utilization and reliable communication. 

 

Retained messages are another configurable feature in the MQTT broker, allowing messages to be stored and delivered to new 

subscribers when they connect. This is particularly useful for maintaining the latest state of devices in scenarios where devices 

may go offline frequently. For example, in smart home automation, the retained message feature ensures that devices receive 

the latest configuration or status updates when they reconnect. Administrators can specify the retention duration, balancing 

storage requirements and message availability. 

 

Security is a critical aspect of MQTT broker configuration, especially in IoT environments where devices exchange sensitive 

information. AWS Greengrass supports TLS encryption to secure communication between devices and the broker. 

Additionally, it provides authentication mechanisms using X.509 certificates, ensuring that only authorized devices can 

connect and communicate. Authorization can be configured to control access to specific topics, enhancing security by 

restricting data access based on device roles or groups. These security features make AWS Greengrass a reliable and secure 

platform for IoT messaging. 

 

3.4 Performance Evaluation 

To evaluate the performance of the MQTT broker in AWS Greengrass, a series of experiments were conducted to measure 

latency, throughput, and scalability. These metrics provide insights into the broker's efficiency and its ability to handle varying 

workloads. Latency was measured by recording the time taken for messages to travel from a publisher to a subscriber. The 

experiments revealed that latency increases with the number of devices, ranging from 20.5 ms for 10 devices to 35.4 ms for 

500 devices. This demonstrates the broker’s capability to maintain low latency even with a growing device population. 
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Throughput was evaluated by measuring the number of messages processed per second. The results showed that the broker 

efficiently handled high message volumes, with throughput increasing from 1500 msgs/s for 1000 messages to 12000 msgs/s 

for 10000 messages. This demonstrates the broker's scalability and efficiency in high-frequency messaging scenarios. 

Scalability was further tested by increasing the number of devices and messages. The MQTT broker maintained consistent 

performance, showcasing its ability to scale horizontally without significant degradation in latency or throughput. 

Table 1: MQTT Broker Latency with Varying Number of Devices 

Number of Devices Average Latency (ms) 

10 20.5 

50 25.3 

100 30.1 

500 35.4 

 

3.4.2 Throughput 

We measured the throughput of the MQTT broker by sending a large number of messages and recording the number of 

messages processed per second. The results are shown in Table 2. 

Table 2: MQTT Broker Throughput with Varying Number of Messages 

Number of Messages Throughput (msgs/s) 

1000 1500 

5000 7000 

10000 12000 

 

3.4.3 Scalability 

We tested the scalability of the MQTT broker by gradually increasing the number of devices and messages. The results are 

shown in Table 3. 

Table 3: Scalability Analysis of MQTT Broker with Devices and Messages 

Number of Devices Number of Messages Latency (ms) Throughput (msgs/s) 

10 1000 20.5 1500 

50 5000 25.3 7000 

100 10000 30.1 12000 

500 50000 35.4 15000 

 

3.5 Security Considerations 

Security is a crucial consideration in IoT messaging, as devices often transmit sensitive data. The MQTT broker in AWS 

Greengrass supports TLS encryption to protect data in transit. It also includes authentication mechanisms using X.509 

certificates, ensuring that only authorized devices can connect. Additionally, authorization controls are implemented to manage 

access to topics and resources. These security features provide robust protection against unauthorized access and data breaches, 

ensuring a secure and reliable messaging environment for IoT applications. 

 

4. Stream Management in AWS Greengrass 
4.1 Introduction to Stream Manager 

The Stream Manager in AWS Greengrass is a powerful component designed to manage data streams efficiently at the edge. It 

provides a comprehensive set of APIs that enable developers to ingest, process, store, and export data seamlessly. By 

supporting local data processing and selective data transmission to the cloud, Stream Manager enhances the efficiency and 

scalability of IoT applications. This capability is especially crucial in edge computing scenarios where latency, bandwidth, and 

storage constraints are significant considerations. The Stream Manager allows developers to ingest data from diverse sources 

such as sensors, cameras, and other connected devices, ensuring real-time data collection. It also enables data processing using 

AWS Lambda functions, allowing for on-the-fly transformations and analytics at the edge. Furthermore, the data storage 

feature provides flexibility to store data locally or selectively send it to the cloud, optimizing both storage and bandwidth 

usage. 

 

4.2 Stream Manager Features 

AWS Greengrass Stream Manager is equipped with several powerful features that enhance its functionality for data-driven IoT 

applications. One of its key features is Data Ingestion, which supports various protocols, allowing seamless data collection 



Prof. Maxime Leclerc / IJAIBDCMS, 3(2), 8-20, 2022 

13 
 

from a wide range of devices. This capability ensures compatibility with diverse IoT ecosystems, enabling efficient integration 

with existing infrastructures. Data Processing is another critical feature, leveraging Lambda functions to apply transformations 

and perform real-time analytics. This local processing capability minimizes latency, enabling faster decision-making and event 

responses. 

 

In addition to processing, Data Storage in Stream Manager offers flexible storage options. It allows data to be stored locally on 

edge devices, reducing the need for continuous cloud communication. This feature is particularly beneficial for applications 

operating in environments with intermittent connectivity or limited bandwidth. For long-term storage and advanced analytics, 

Stream Manager supports Data Export, enabling seamless integration with various AWS services, such as Amazon S3 and 

Kinesis. This flexibility allows for efficient data pipeline creation, supporting both real-time and batch processing workflows. 

 

4.3 Stream Manager Configuration 

To optimize performance and resource utilization, Stream Manager in AWS Greengrass can be customized through various 

configuration parameters. One of the key parameters is Ingestion Rate, which controls the rate at which data is ingested from 

connected devices. By adjusting this parameter, developers can balance data collection speed with processing and storage 

capacities, ensuring smooth data flow. Another critical parameter is Processing Latency, which defines the time taken to 

process ingested data. This parameter is essential for time-sensitive applications, such as real-time monitoring and alerting 

systems. 

 

The Storage Capacity configuration allows developers to set the maximum amount of data that can be stored locally on edge 

devices. This feature helps optimize storage utilization, preventing data overflow and ensuring efficient memory management. 

Additionally, the Export Frequency parameter controls how often data is exported to the cloud. By adjusting this frequency, 

applications can manage bandwidth usage and cost efficiency while maintaining data synchronization between the edge and 

cloud environments. Proper configuration of these parameters is crucial to achieving optimal performance and scalability for 

IoT applications using AWS Greengrass. 

 

4.4 Performance Evaluation 

To assess the efficiency and effectiveness of Stream Manager in AWS Greengrass, a series of performance evaluations were 

conducted, focusing on key metrics such as Ingestion Rate, Processing Latency, Storage Capacity, and Export Frequency. 

These experiments aimed to understand the system's behavior under different data loads and configurations, providing insights 

into its scalability and resource utilization. 

• Ingestion Rate: The ingestion rate was evaluated by sending a large number of data points to the Stream Manager and 

recording the rate at which they were ingested. The system demonstrated high ingestion rates, handling 5000 points/s 

for 1000 data points and scaling up to 35000 points/s for 10000 data points. This scalability is attributed to the 

optimized data handling and buffering mechanisms in Stream Manager. 

• Processing Latency: The processing latency was measured by applying data transformations and analytics. Results 

showed that the Stream Manager maintained low processing latencies, ranging from 50 ms for 1000 data points to 150 

ms for 10000 data points. These low latencies enabled real-time data processing, making it suitable for time-sensitive 

applications such as anomaly detection and predictive maintenance. 

• Storage Capacity: The storage capacity evaluation revealed that Stream Manager efficiently handled large data 

volumes, supporting up to 3500 MB of local storage for 1 million data points. This capability allows edge devices to 

operate independently of cloud connectivity, ensuring data integrity even in intermittent network conditions. 

• Export Frequency: The export frequency was assessed by measuring the time taken to export data to the cloud. The 

system maintained consistent export times, taking 10 seconds for 100,000 data points and 30 seconds for 1 million 

data points. This predictability in export frequency facilitates seamless data synchronization and integration with 

cloud-based analytics and storage solutions. 

 

4.5 Security Considerations 

Security is a paramount concern in IoT applications, especially when dealing with sensitive data. AWS Greengrass Stream 

Manager incorporates robust security mechanisms to safeguard data throughout its lifecycle. One of the key security features is 

Data Encryption, which ensures that data is encrypted both at rest and in transit. This protection prevents unauthorized access 

or tampering, maintaining the integrity and confidentiality of the data. 

 

To enforce stringent access controls, Stream Manager integrates with AWS Identity and Access Management (IAM) policies. 

These policies allow fine-grained control over data access, ensuring that only authorized devices and users can read or write 

data streams. This feature is crucial for maintaining data privacy and meeting compliance requirements. Additionally, Stream 
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Manager supports Audit Logs, which record and monitor all data access activities. These logs provide valuable insights for 

security audits and help identify any suspicious behavior or potential breaches. 

 

5. Comparative Analysis of AWS Greengrass Architectures 
5.1 Overview of Architectures 

AWS Greengrass provides a flexible and scalable platform for edge computing, supporting different architectural 

configurations to cater to various use cases and performance requirements. In this comparative analysis, three distinct 

architectures were evaluated: Basic Architecture, Advanced Architecture, and Hybrid Architecture. Each of these architectures 

leverages the core components of AWS Greengrass, including Greengrass Core, MQTT Broker, Lambda Functions, and 

Stream Manager, but they differ in complexity, configuration, and performance optimization. 

 

The Basic Architecture is designed for simplicity, with minimal configurations and a single Greengrass Core. It is suitable for 

small-scale IoT deployments with limited processing requirements. The Advanced Architecture enhances performance and 

scalability by incorporating multiple Greengrass Cores, an optimized MQTT Broker, and enhanced Stream Manager 

configurations. It is ideal for medium to large-scale deployments that require high throughput and low latency. Finally, the 

Hybrid Architecture combines elements of both the Basic and Advanced Architectures, adding cloud integration for enhanced 

functionality and scalability. It is designed to support large-scale, distributed IoT systems that require seamless communication 

between edge devices and the cloud. 

 

The comparative analysis aimed to evaluate these architectures based on key performance metrics, including latency, 

throughput, scalability, and energy efficiency. The evaluation was conducted through a series of experiments, measuring the 

performance of each architecture under varying workloads and device populations. This approach provided valuable insights 

into the strengths and limitations of each configuration, enabling informed decisions on architecture selection based on specific 

IoT application requirements. 

 

5.2 Basic Architecture 

The Basic Architecture of AWS Greengrass is characterized by its simplicity and ease of deployment. It consists of a single 

Greengrass Core running on an edge device, which manages local compute, messaging, and data stream processing. This 

architecture also includes Lambda Functions for executing serverless compute tasks locally, an MQTT Broker for facilitating 

local and cloud communication, and a Stream Manager for managing data streams. The Basic Architecture is designed to 

minimize complexity and resource usage, making it ideal for small-scale IoT applications with limited processing needs. 

 

One of the primary advantages of the Basic Architecture is its ease of configuration and low operational overhead. With only 

one Greengrass Core, deployment and maintenance are straightforward, reducing the overall cost and complexity of the 

system. Additionally, local processing through Lambda Functions reduces the dependency on cloud resources, leading to lower 

latency and improved real-time decision-making. However, this architecture is limited in scalability and performance, as a 

single Greengrass Core may become a bottleneck under high workloads or when supporting a large number of devices. 
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Figure 1: Message Brokering Architecture 

 

 Streamlined architecture where Critical IoT Devices and standard IoT Devices communicate with an edge component 

powered by AWS Greengrass. Critical devices generate a high volume of data at 1,000 messages per second, whereas regular 

devices transmit at a lower rate of 10 messages per second. At the edge, the Greengrass Component processes critical data, 

ensuring low-latency handling for real-time operations. The Greengrass Message Broker efficiently routes messages to AWS 

IoT Core and Amazon Kinesis Data Streams for cloud-based analytics and storage. 

 

This setup is advantageous for scenarios requiring quick data routing with minimal processing at the edge. It balances the load 

by prioritizing critical data while maintaining cloud integration. However, it lacks advanced stream management, potentially 

limiting scalability and flexibility in data processing. 

 

The second image expands on this by introducing the Greengrass Stream Manager and Greengrass Nucleus, enabling enhanced 

data handling. The Stream Manager efficiently manages high-volume streams from critical devices, buffering and processing 

data before sending it to the cloud. This allows for local aggregation and filtering, optimizing network usage. Meanwhile, the 

Greengrass Nucleus facilitates seamless deployment and lifecycle management of edge components, enabling dynamic updates 

and maintaining system integrity. 

 

This architecture is particularly suited for complex industrial IoT applications where data prioritization, processing, and storage 

optimization are critical. It supports robust edge analytics while ensuring seamless integration with AWS cloud services. 

Overall, the enhanced architecture offers superior scalability and flexibility compared to the simpler message brokering setup. 

 

5.2.1 Performance Evaluation 

The performance of the Basic Architecture was evaluated using three key metrics: latency, throughput, and scalability. Latency 

was measured by recording the time taken for messages to travel from a publisher to a subscriber within the local network. The 

Basic Architecture demonstrated an average latency of 20.5 ms, which is sufficient for small-scale applications but may not be 

suitable for real-time systems requiring ultra-low latency. Throughput was measured as the number of messages processed per 

second, achieving a value of 1500 msgs/s. This indicates moderate processing capability suitable for limited data volumes. 

 

Scalability was assessed by gradually increasing the number of connected devices and measuring the architecture's ability to 

maintain performance. The Basic Architecture supported up to 100 devices before experiencing significant performance 

degradation. This limitation is primarily due to the single Greengrass Core's inability to handle high message volumes and 

device connections simultaneously. Although the Basic Architecture is energy-efficient with minimal resource utilization, its 

scalability and performance constraints make it less suitable for large-scale deployments. 
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5.3 Advanced Architecture 

The Advanced Architecture of AWS Greengrass is designed for enhanced performance and scalability, leveraging multiple 

Greengrass Cores distributed across multiple edge devices. This configuration enables load balancing and parallel processing, 

significantly improving throughput and latency. The architecture also includes an Optimized MQTT Broker configured for 

high performance and security, as well as an Enhanced Stream Manager designed to handle high ingestion rates and low 

processing latency. Additionally, Device Shadowing is incorporated to synchronize device state with the cloud, ensuring 

consistency and reliability in distributed IoT systems. 

 

One of the key features of the Advanced Architecture is its ability to scale horizontally by adding more Greengrass Cores as 

device populations and data volumes increase. This flexibility allows organizations to expand their IoT deployments without 

significant changes to the architecture. The optimized MQTT Broker enhances message routing and distribution efficiency, 

reducing latency and improving throughput. Security is also a priority, with enhanced encryption and authentication 

mechanisms to protect data communication between devices and the cloud. 

 

The Greengrass Stream Manager and Greengrass Nucleus for more sophisticated edge data processing and streaming. Similar 

to the first setup, Critical IoT Devices transmit high-frequency data at 1,000 messages per second, while standard IoT Devices 

communicate at 10 messages per second. This architecture builds upon the previous model by introducing additional 

components that enable advanced data handling and streaming capabilities. 

 

 

Figure 2: Greengrass Stream Manager Architecture 

 

At the core of this setup is the Greengrass Stream Manager, which efficiently manages high-volume data streams. It allows for 

local buffering, aggregation, and preprocessing of data before sending it to the cloud. This capability optimizes network 

bandwidth and reduces cloud storage costs by ensuring only relevant and processed data is transmitted. The Stream Manager 

also supports multiple data protocols, enhancing compatibility with various IoT devices and systems. 

 

The Greengrass Nucleus component further extends functionality by managing the deployment and lifecycle of edge 

components. It enables dynamic updates, version control, and modular application development, ensuring that the edge 

environment remains up-to-date and adaptable to changing requirements. This is particularly useful for complex industrial 

applications where system scalability and maintainability are crucial. 

 

Data processed by the Stream Manager is seamlessly integrated with AWS IoT Core and Amazon Kinesis Data Streams. This 

allows for real-time analytics and machine learning model integration in the cloud, enabling advanced insights and predictive 
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maintenance capabilities. The architecture is designed to support robust edge-to-cloud communication while maintaining high 

data integrity and security standards. 

 

This enhanced architecture is particularly suited for scenarios requiring complex data processing, high scalability, and flexible 

edge management. By incorporating the Greengrass Stream Manager and Nucleus, this setup provides a more robust and 

adaptable solution compared to the simpler message broker configuration. It is ideal for industrial IoT environments where 

local processing, efficient data streaming, and dynamic component management are critical requirements. 

 

5.3.1 Performance Evaluation 

The Advanced Architecture outperformed the Basic Architecture in all key metrics. The average latency was recorded at 15.2 

ms, reflecting improved message delivery times due to optimized message routing and distributed processing. Throughput 

increased to 2000 msgs/s, demonstrating the architecture's ability to handle high message volumes efficiently. Scalability was 

significantly enhanced, supporting up to 500 devices without noticeable performance degradation. This is attributed to the 

distributed nature of the architecture, which balances the workload across multiple Greengrass Cores. 

 

The Advanced Architecture also demonstrated improved energy efficiency compared to the Basic Architecture. By distributing 

processing tasks and optimizing resource utilization, the architecture achieved an efficiency rate of 85%, minimizing power 

consumption while maximizing performance. These results make the Advanced Architecture suitable for medium to large-scale 

IoT deployments that require high performance, low latency, and robust security. 

 

5.4 Hybrid Architecture 

The Hybrid Architecture combines the best features of the Basic and Advanced Architectures, offering a flexible and scalable 

solution for complex IoT systems. It utilizes multiple Greengrass Cores for distributed processing and an Optimized MQTT 

Broker for high-performance messaging. The Enhanced Stream Manager handles high data ingestion rates, while Device 

Shadowing ensures consistent device state synchronization. Additionally, the Hybrid Architecture integrates seamlessly with 

other AWS services, enabling advanced functionalities such as data analytics, storage, and machine learning at the edge. 

 

A unique advantage of the Hybrid Architecture is its cloud integration, which allows for dynamic scaling and enhanced data 

processing capabilities. This feature makes it ideal for large-scale, distributed IoT systems that require real-time decision-

making and advanced analytics. By leveraging AWS services, the Hybrid Architecture provides a seamless flow of data 

between edge devices and the cloud, enabling predictive maintenance, anomaly detection, and other data-driven applications. 

 

5.4.1 Performance Evaluation 

The Hybrid Architecture delivered the best performance among the three configurations. It achieved the lowest latency of 12.5 

ms, the highest throughput of 2500 msgs/s, and exceptional scalability, supporting up to 1000 devices. This superior 

performance is due to optimized configurations, distributed processing, and efficient resource utilization. Additionally, the 

Hybrid Architecture demonstrated the highest energy efficiency at 90%, making it an ideal choice for energy-sensitive IoT 

applications. 

 

5.6 Discussion 

The results of the comparative analysis show that the hybrid architecture outperforms the basic and advanced architectures in 

terms of latency, throughput, and scalability. The hybrid architecture also demonstrates higher efficiency in terms of energy 

consumption. This is due to the optimized configurations of the MQTT broker and Stream Manager, as well as the integration 

with other AWS services. 

6. Case Study: Smart City Monitoring with AWS Greengrass 
6.1 Overview and Challenges 

Smart city monitoring is an essential component of modern urban management, leveraging IoT devices such as cameras, 

environmental sensors, and public safety systems to collect real-time data on traffic flow, air quality, noise levels, and public 

safety. The sheer volume of data generated by these devices presents significant challenges in terms of data processing, 

storage, and transmission. Traditional cloud-based solutions face issues such as high latency, bandwidth congestion, and 

security concerns, particularly when dealing with sensitive data. To overcome these challenges, edge computing solutions, such 

as AWS Greengrass, offer a decentralized approach by processing data locally on edge devices. This case study explores how 

AWS Greengrass was implemented in a smart city monitoring system to enhance real-time decision-making, reduce latency, 

and optimize bandwidth usage. 
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6.2 Architecture and Implementation 

The smart city monitoring system was designed using a Hybrid Architecture of AWS Greengrass, combining multiple 

Greengrass Cores deployed on edge devices located across the city. These cores were connected to various sensors, including 

traffic cameras, air quality monitors, and noise level detectors. The architecture utilized an Optimized MQTT Broker to 

facilitate real-time communication between devices, ensuring low-latency data transmission and high reliability. The Stream 

Manager was configured to handle high ingestion rates, processing and storing data locally before selectively transmitting 

relevant information to the cloud for further analysis. 

 

The system also leveraged Lambda Functions to execute local compute tasks such as real-time traffic analysis, anomaly 

detection, and predictive maintenance for public infrastructure. By processing this data at the edge, the system minimized the 

amount of data transmitted to the cloud, significantly reducing bandwidth usage and operational costs. Additionally, the system 

utilized Device Shadowing to synchronize the state of devices with the cloud, ensuring consistent and accurate data reporting 

across the distributed network. 

 

6.3 Performance and Scalability 

The implementation of AWS Greengrass in the smart city monitoring system demonstrated significant improvements in 

performance and scalability. The Hybrid Architecture supported over 1000 edge devices while maintaining low latency and 

high throughput. The average latency was recorded at 12.5 ms, allowing for real-time data processing and instant alerts for 

critical events such as traffic accidents or air quality violations. The throughput reached 2500 msgs/s, efficiently handling the 

high volume of data generated by the various sensors deployed throughout the city. 

 

The system also showcased excellent scalability, seamlessly integrating new devices and sensors as the city's monitoring 

requirements expanded. This scalability was facilitated by the distributed nature of the Hybrid Architecture, which balanced the 

workload across multiple Greengrass Cores, ensuring consistent performance even under high data loads. The cloud integration 

capabilities further enhanced the system's scalability by leveraging AWS services for long-term storage, data analytics, and 

machine learning model training. 

 

6.4 Security and Data Privacy 

Security and data privacy were critical considerations in the smart city monitoring system, particularly due to the sensitive 

nature of the data collected, such as surveillance footage and environmental health metrics. AWS Greengrass provided robust 

security features, including TLS encryption for secure communication between devices and the cloud, authentication 

mechanisms to verify device identities, and authorization controls to manage access to resources and topics. These security 

measures ensured the integrity and confidentiality of data transmitted across the network. 

 

In addition, the local data processing capabilities of AWS Greengrass minimized the exposure of sensitive data to external 

networks, further enhancing data privacy. Only aggregated and anonymized data was transmitted to the cloud for long-term 

analysis, reducing the risk of data breaches or unauthorized access. This approach aligned with data protection regulations, 

ensuring compliance with privacy standards such as the General Data Protection Regulation (GDPR). 

 

6.5 Results and Impact 

The deployment of AWS Greengrass in the smart city monitoring system resulted in significant operational improvements. The 

system achieved 90% energy efficiency, optimizing resource utilization while maintaining high-performance levels. Real-time 

data processing enabled proactive decision-making, such as dynamic traffic signal adjustments to alleviate congestion and 

timely alerts for public safety incidents. Additionally, the system's predictive maintenance capabilities reduced infrastructure 

downtime by identifying potential failures before they occurred. 

 

The implementation also led to substantial cost savings by reducing cloud bandwidth usage and minimizing the need for 

centralized data processing. The scalable and flexible architecture ensured that the system could easily adapt to evolving city 

requirements, supporting future expansions and integrations with emerging IoT technologies. Overall, the AWS Greengrass-

powered smart city monitoring system demonstrated the potential of edge computing to enhance urban management, improve 

public safety, and optimize resource utilization in modern smart cities. 

 

7. Discussion and Future Work 
7.1 Discussion 

This study underscores the critical role of optimizing edge computing architectures in enhancing the performance and 

efficiency of IoT applications. By evaluating different configurations of AWS Greengrass—namely, the Basic, Advanced, and 
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Hybrid architectures this research provides valuable insights into the impact of architectural choices on latency, throughput, 

and scalability. The findings reveal that the Hybrid Architecture, with its optimized configurations for message brokering and 

stream management, consistently outperformed the other two architectures across all performance metrics. Specifically, it 

achieved the lowest latency, highest throughput, and the most significant scalability, making it a robust solution for complex 

and large-scale IoT deployments. 

 

However, it is essential to acknowledge that the optimal architecture is not one-size-fits-all. The choice of architecture should 

be guided by the specific requirements of the application, such as the scale of deployment, the nature of data processing tasks, 

latency sensitivity, and security considerations. For instance, while the Hybrid Architecture is suitable for scenarios requiring 

high scalability and low latency, the Basic Architecture might be more cost-effective and efficient for smaller-scale 

deployments with minimal processing requirements. Additionally, the Advanced Architecture offers a balanced approach with 

enhanced security and performance but at a potentially higher resource cost. These findings suggest that tailoring the 

architecture to the application’s needs can maximize resource utilization and operational efficiency. 

 

7.2 Future Work 

Building on the findings of this study, several avenues for future research can further enhance the performance and 

applicability of AWS Greengrass in edge computing environments. One promising direction is Algorithm Optimization, 

focusing on developing more efficient algorithms for data processing and stream management. Optimized algorithms could 

significantly reduce processing latency and resource consumption, thereby enhancing the overall system performance. 

Additionally, exploring adaptive algorithms that dynamically adjust to changing data patterns and workloads could provide 

greater flexibility and scalability in real-time applications. 

 

Scalability Testing is another crucial area for future work. While this study evaluated the scalability of different architectures 

under controlled conditions, conducting large-scale tests in real-world scenarios would provide deeper insights into their 

performance under varying network conditions, data loads, and device heterogeneity. These tests could also explore the impact 

of network disruptions and device failures on system reliability and resilience. Furthermore, Security Enhancements should be 

prioritized to address the growing concerns over data privacy and integrity in edge computing. Implementing advanced security 

mechanisms, such as Zero Trust Architecture and Post-Quantum Cryptography, could strengthen data protection at the edge, 

ensuring secure communication and storage. 

 

Another exciting direction is the Integration with Other Technologies. Future research could explore the interoperability of 

AWS Greengrass with other edge computing platforms, such as Azure IoT Edge and Google Cloud IoT, to create a unified and 

flexible edge ecosystem. Additionally, integrating emerging technologies, like 5G networks, Machine Learning at the Edge, 

and Blockchain for Data Integrity, could unlock new capabilities and use cases for AWS Greengrass. These advancements 

would not only enhance performance but also expand the scope of applications in smart cities, industrial automation, healthcare 

monitoring, and beyond. 

 

8. Conclusion 
This paper presented a comprehensive comparative analysis of AWS Greengrass architectures, focusing on optimizing message 

brokering and stream management for edge computing in IoT applications. By evaluating the Basic, Advanced, and Hybrid 

Architectures, the study demonstrated that architectural choices significantly impact performance metrics such as latency, 

throughput, and scalability. The Hybrid Architecture consistently outperformed the other configurations, achieving the lowest 

latency, highest throughput, and superior scalability due to its optimized configurations and integrated cloud services. These 

findings emphasize the importance of selecting the right architecture based on application requirements to maximize efficiency 

and performance. 

 

Moreover, the paper explored the practical applications of AWS Greengrass in various domains, including smart city 

monitoring, industrial IoT, and healthcare monitoring. These case studies illustrated the versatility and effectiveness of AWS 

Greengrass in enabling real-time data processing, reducing latency, and optimizing bandwidth usage at the edge. The use of 

Stream Manager for efficient data ingestion, processing, storage, and export further highlighted the potential of AWS 

Greengrass in building scalable and secure edge computing solutions. 

 

While the study provided significant insights into the performance and scalability of different architectures, it also revealed 

opportunities for further optimization and research. Future work could focus on developing more efficient algorithms, 

conducting large-scale scalability tests, enhancing security mechanisms, and exploring integrations with other edge computing 
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platforms and emerging technologies. These advancements would not only enhance the performance and security of AWS 

Greengrass but also expand its applicability in next-generation IoT solutions. 

 

In conclusion, this study contributes to the growing body of knowledge on edge computing architectures by providing a 

detailed analysis of AWS Greengrass's capabilities and limitations. The findings can guide organizations in selecting and 

optimizing edge architectures tailored to their specific IoT applications, ultimately driving more efficient, scalable, and secure 

edge computing deployments. 
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