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Abstract: Cloud-native applications now run across distributed services, containers, and serverless functions, each 

emitting its own logs, metrics, traces, and events. While modern observability tools collect these signals effectively, they 

tend to process them in isolation, leaving engineers to manually correlate symptoms during incidents. This fragmentation 

slows detection, clouds root-cause analysis, and weakens real-time understanding of program health. This paper 

introduces the Real-Time Program Health (RTPH) Framework, a multi-layer model that unifies telemetry ingestion, real-

time stream processing, machine-learning-based anomaly detection, and health scoring into a single, interpretable view of 

system behavior. RTPH is evaluated in a hybrid cloud environment running microservice workloads on Kubernetes, with 

synthetic faults injected under controlled conditions. Its performance is compared against established observability stacks 

that include metrics, logging, and tracing tools. Experimental results show that RTPH reduces anomaly detection latency 

by 32–45%, lowers false-positive alerts by 28–40%, and correctly correlates 87–93% of cross-service anomalies, while 

keeping CPU and memory overhead below 8% and 6% per node, respectively. These findings indicate that unified, real-

time health modeling can provide more accurate, actionable visibility into cloud deployments than traditional, signal-

specific monitoring approaches. 

 

Keywords: Cloud Observability, Telemetry Correlation, Anomaly Detection, Real-Time Monitoring, Program Health, 

Cloud-Native Systems. 

 

1. Introduction 
Cloud systems today operate as sprawling, interconnected 

environments that span containers, microservices, serverless 

functions, and distributed data flows. Each component runs 

with its own telemetry stream, life cycle, and failure modes. 

When one part of the environment slows or deviates from 

expected behavior, the impact often surfaces far from the 

source. Teams usually discover symptoms first errors in logs, 

sudden shifts in latency, or drops in user satisfaction—and then 

search for the underlying cause. This reactive pattern persists 

even with modern observability tools, largely because visibility 

remains scattered across independent dashboards and siloed 

data streams [1]–[3]. As organizations adopt multi-cloud and 

hybrid deployments, this fragmentation becomes more 

pronounced. A single request may travel through several 

platforms before reaching its destination. Logs reside in one 

system, traces in another, and infrastructure metrics elsewhere. 

Although existing solutions collect these signals effectively, 

they rarely interpret them together in real time [4]. Engineers 

must mentally piece together events from different tools to 

understand what the system is experiencing. This manual 

correlation slows diagnosis, increases operational overhead, 

and introduces blind spots during critical incidents. 

 
Fig 1: Telemetry Fragmentation in Modern Cloud Systems. 

Logs, Metrics, and Traces are Emitted Independently at 

Each Span. 

 

The growing complexity of cloud applications raises an 

important challenge: how can we express system health as a 

live, unified signal rather than a collection of disconnected 

metrics? This challenge motivates the work in this paper. 

Instead of treating metrics, logs, traces, and user interactions as 

separate artifacts, we explore how they can serve as 

components of a shared understanding of program health. A 

cohesive model would allow engineers to detect subtle shifts in 

behavior before they escalate and to interpret anomalies with 

greater context. To address this need, we introduce the Real-

Time Program Health (RTPH) Framework, a novel approach 

that combines telemetry ingestion, real-time correlation, and 
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AI-driven analysis to produce a single, continuous 

representation of system health. This model shifts observability 

from a set of tools toward an integrated, dynamic perspective 

capable of supporting faster decision-making and more 

resilient operations. 

 

The contributions of this work include: 

1. A structured analysis of limitations in current 

observability and monitoring approaches across both 

open-source and commercial platforms [5]–[7]. 

2. A new architectural model that unifies telemetry 

streams and computes a real-time health signal 

reflecting both internal system behavior and user-

facing conditions. 

3. A quantitative evaluation demonstrating that the 

RTPH Framework improves detection latency, 

reduces interpretation complexity, and strengthens 

cross-layer visibility. 

 

2. Background and Literature Review 
Modern cloud applications are built from interconnected 

microservices, containerized workloads, serverless functions, 

and distributed data paths. This shift has brought agility and 

scale, but it has also introduced deep operational complexity. 

Each component emits its own telemetry logs, traces, metrics, 

and events yet these signals often remain separated across 

different platforms. As a result, engineers receive abundant 

information but limited context, making it difficult to form an 

accurate, real-time understanding of system health. Early 

monitoring tools such as Nagios and Zabbix provided periodic 

checks and rule-based alerting. Their models were designed for 

static infrastructures where application topologies changed 

infrequently. While effective in those settings, they struggle 

with the dynamic, fast-changing nature of cloud-native 

deployments. These limitations prompted the development of 

new frameworks and standards intended to capture richer 

telemetry streams. One influential example is Dapper, Google’s 

distributed tracing infrastructure, which demonstrated how 

request-level traces could reveal complex interactions across 

large-scale systems [1]. Open-source observability stacks 

expanded on this idea. Prometheus and Grafana became widely 

adopted for time-series metrics, while Elastic Stack offered 

scalable log aggregation and analysis. More recently, 

OpenTelemetry introduced a standardized approach to 

instrumenting cloud services, allowing applications to produce 

consistent logs, metrics, and traces regardless of vendor or 

platform [6]. These tools significantly improved the ability to 

gather fine-grained telemetry across distributed services. 

 

Despite this progress, challenges persist. Research shows 

that current observability tools tend to isolate telemetry streams 

rather than merge them into a cohesive narrative of system 

behavior [2], [4]. Logs capture discrete events, traces show 

request paths, and metrics reveal performance trends, but each 

provides only a partial perspective. Engineers must perform 

mental correlation to interpret how signals relate, especially 

during high-pressure incident response. This manual synthesis 

slows diagnosis and increases operational risk. Work on 

microservice monitoring further highlights this issue. Heinrich 

et al. describe architectural metrics designed to track system-

wide behavior, yet acknowledge that visibility remains 

fragmented when working across heterogeneous environments 

[3]. Commercial observability platforms—Datadog, New 

Relic, Dynatrace—have attempted to address this 

fragmentation through unified dashboards and machine 

learning features, but they still rely on separate underlying data 

structures and often emphasize vendor-specific ecosystems [5]. 

For multi-cloud or hybrid deployments, this creates new blind 

spots rather than eliminating them. Efforts to incorporate 

machine learning into anomaly detection have produced 

significant insights. Surveys of predictive monitoring 

techniques illustrate how statistical models, clustering 

methods, and deep learning architectures can detect emerging 

irregularities before they trigger incidents [7]. However, these 

approaches typically operate on individual telemetry types or 

pre-processed datasets rather than live, correlated streams. 

Their predictions may indicate unusual patterns, but they 

seldom express how those patterns influence the program as a 

whole. 

 

Across these studies and tools, three consistent limitations 

emerge: 

1. Telemetry remains siloed: Existing systems capture 

rich data but rarely combine logs, traces, metrics, and 

user events into a unified, real-time interpretation of 

system health. 

2. Correlation is manual and reactive: Engineers must 

connect symptoms across dashboards to understand 

what the system is experiencing, slowing detection 

and deepening operational uncertainty. 

3. Cross-layer insights are limited: Infrastructure tools 

describe hardware and container performance; 

application tools show code-level behavior; user 

metrics reveal experience. Few solutions integrate all 

three layers into a single health model. 

 

These gaps motivate the need for a framework that 

interprets distributed cloud systems as cohesive, living 

environments rather than sets of disjoint signals. A model that 

can combine telemetry sources, correlate them in real time, and 

express their relationships as a meaningful health signal would 

reshape how teams identify issues, understand impact, and 

maintain reliability. 

 

2.1. Problem Statement 

Cloud deployments have evolved into environments where 

applications depend on distributed services, dynamic scaling 

policies, and multi-cloud infrastructures. Each component 

generates logs, metrics, traces, and events that describe local 

behavior, yet these signals are rarely interpreted together. 

Existing observability and monitoring tools collect large 

volumes of telemetry, but they organize data by type rather 
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than by system context [2], [4]. As a result, teams receive 

detailed information about individual components without a 

clear understanding of how those components influence one 

another in real time. This fragmentation forces engineers to 

correlate signals manually across dashboards, alerts, and 

tracing tools. During performance degradation or emerging 

failures, this manual effort introduces delays that extend 

incident duration and complicate diagnosis. Studies in 

microservice monitoring highlight how this lack of cross-layer 

context increases operational uncertainty and slows mitigation 

efforts [3]. Without a unified health signal, organizations 

struggle to identify early signs of instability, estimate the scope 

of an issue, or track the impact of an anomaly across layers of 

the stack. 

 

Traditional monitoring approaches focus on static 

thresholds and individual resource checks, offering limited 

insight into distributed workflows. Modern observability 

platforms provide deeper visibility but still treat telemetry 

streams independently, leaving the responsibility of 

interpretation to the operator [4]. Predictive models introduced 

in recent research improve anomaly detection but rarely 

operate on live, multi-type telemetry streams or offer a 

cohesive view of program health [7]. The core problem 

addressed in this paper is the absence of an integrated, real-

time mechanism that combines logs, metrics, traces, and user-

experience signals into a unified representation of cloud 

program health. Without such a mechanism, incident response 

remains reactive, operational risk increases, and system 

behavior becomes difficult to interpret in complex, fast-

changing deployments. 

 

This gap motivates the development of the Real-Time 

Program Health (RTPH) Framework, a model designed to 

unify telemetry sources, correlate cross-layer signals, and 

express system health as a continuous, interpretable signal 

suitable for real-time decision-making. The following section 

introduces the architecture and core components of this 

framework. 

 

2.2. Proposed Model: The Real-Time Program Health 

(RTPH) Framework 

The Real-Time Program Health (RTPH) Framework is 

designed to unify disparate telemetry streams and express 

system behavior as a continuous, interpretable health signal. 

Unlike traditional monitoring platforms that evaluate logs, 

metrics, and traces independently [2], [4], the RTPH model 

correlates cross-layer signals to form a coherent representation 

of cloud application health. The framework is organized into 

five layers: data ingestion, real-time processing, intelligence, 

visualization, and integration. Together, these layers create a 

scalable architecture capable of evaluating distributed systems 

in real time. An overview of the Real-Time Program Health 

(RTPH) Framework is shown in Fig. 2. 

 
Fig 2: High-level architecture of the Real-Time Program 

Health (RTPH) Framework, showing unified telemetry 

ingestion, correlation, intelligence, visualization, and 

integration layers. 

 

2.2.1. Data Layer – Unified Telemetry Ingestion 

The data layer acts as the foundation of RTPH. It collects 

logs, metrics, traces, and user-generated signals from 

distributed components across cloud environments. By using 

standard instrumentation libraries and vendor-neutral formats 

such as OpenTelemetry [6], the framework ensures consistency 

in how telemetry is captured. 

This layer supports three goals: 

1. Uniformity: Ensures that all services emit telemetry in 

compatible formats. 

2. Completeness: Captures signals from application, 

infrastructure, and user-experience layers. 

3. Continuity: Streams telemetry in real time to avoid the 

delays associated with batch processing. 

 

The output of this layer is a set of synchronized data 

streams that reflect the live state of the system. 

 

2.2.2. Processing Layer – Real-Time Stream Analytics and 

Correlation 

Once telemetry is ingested, the processing layer evaluates 

signals using streaming engines capable of high-throughput, 

low-latency analysis. Unlike existing observability pipelines 

that operate on isolated signal types, RTPH fuses logs, traces, 

and metrics into a unified timeline. 

This layer performs three core operations: 

 Temporal alignment: Synchronizes signals across 

services and computes relationships between events. 

 Contextual correlation: Links anomalies across spans, 

microservices, and infrastructure components. 
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 Pattern extraction: Identifies deviations in distributed 

workflows, connection chains, and request paths. 

 

This level of correlation reduces the cognitive load on 

engineers by automating what is typically a manual interpretive 

task [3]. 

 

2.2.3. Intelligence Layer – AI-Driven Anomaly Detection and 

Health Scoring 

The intelligence layer applies machine learning models to 

identify abnormal patterns in system behavior. While previous 

work has explored anomaly detection on individual telemetry 

types [7], RTPH evaluates multi-modal signals simultaneously. 

This layer includes: 

1. Anomaly Prediction Engine: Uses time-series 

forecasting, clustering techniques, and neural-network 

models to detect emerging irregularities before they 

manifest as incidents. 

2. Health Scoring Model: Generates a continuous health 

score, updated in real time, that reflects correlations 

across services, infrastructure metrics, and user 

experience indicators. This score becomes the 

unifying metric that operators can monitor instead of 

tracking dozens of uncorrelated signals. 

3. Adaptive Baselines: The system updates thresholds 

automatically based on workload patterns rather than 

relying on static, hand-tuned limits. 

 

Together, these components transform raw telemetry into 

actionable intelligence. The structure of the intelligence layer is 

illustrated in Fig. 3. 

 

 
Fig 3: Intelligence layer of the RTPH Framework, 

including the anomaly detection engine, adaptive baselines, 

and the real-time health scoring model. 

 

2.3. Visualization Layer – Real-Time Health Dashboards 

The visualization layer converts correlated insights into 

intuitive dashboards. Instead of traditional charts that display 

individual time-series metrics, RTPH provides: 

 Live system health scores 

 Service dependency maps 

 Anomaly propagation timelines 

 Cross-layer event overlays 

 

These visualizations combine telemetry streams into a 

unified representation of system experience. Operators gain 

immediate visibility into what is failing, why it is failing, and 

how failures propagate through distributed components. 

 

2.4.  Integration Layer – Ecosystem and Automation 

Interfaces 

To support real-world deployment, the framework includes 

interfaces for integration with external systems: 

 CI/CD pipelines: Inject real-time health checks into 

deployment workflows. 

 Incident response tools: Integrates with PagerDuty, 

OpsGenie, or custom alerting. 

 Existing observability stacks: Supplements 

Prometheus, Grafana, Elastic, and vendor platforms 

by providing unified interpretation rather than 

replacing their data collection roles. 

 

This integration layer ensures that RTPH can coexist with 

existing tools, acting as a correlation and intelligence engine 

rather than requiring organizations to rebuild their monitoring 

infrastructure. 

 

2.5. Novelty and Advantages of RTPH 

The RTPH Framework is distinct from existing monitoring 

solutions in three key ways: 

1. Multi-Modal Correlation: RTPH correlates logs, 

metrics, traces, and user signals into a single model—

something current tools rarely achieve [2], [4]. 

2. Real-Time Health Scoring: By combining machine 

learning with cross-layer telemetry, RTPH generates a 

live health score that captures system behavior 

holistically. 

3. Scalable Architecture: The layered design supports 

cloud-scale workloads and distributed environments 

without relying on centralized monolithic processing. 

 

These contributions position RTPH as a robust, scalable, 

and uniquely unified model for understanding program health 

in modern cloud deployments. 

 

3. Methodology 
The methodology defines how the Real-Time Program 

Health (RTPH) Framework was evaluated in a controlled and 

repeatable environment. The goal is to assess its ability to 

correlate telemetry streams, detect anomalies earlier, and 

provide real-time visibility into distributed cloud applications. 

To achieve this, we designed an experimental setup that 

reflects modern production environments, including 
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containerized microservices, hybrid cloud infrastructure, and 

dynamic scaling behavior. 

 

3.1. Experimental Environment 
The evaluation environment consists of a multi-node 

Kubernetes cluster deployed across a hybrid cloud setup. Each 

node hosts containerized microservices representing typical 

application workloads such as API gateways, data processors, 

and user-facing services. These services were instrumented 

with Open Telemetry for uniform collection of logs, metrics, 

and traces [6]. A synthetic workload generator was used to 

simulate realistic traffic patterns and to trigger fault conditions 

such as latency spikes, resource throttling, and service 

interruptions. This approach ensures consistency across test 

runs and enables direct comparison with baseline observability 

tools. 

 

3.2. Telemetry Collection and Data Sources 
Telemetry was collected from four primary sources: 

1. Application Metrics: CPU, memory, request 

throughput, and latency exported via Prometheus 

endpoints. 

2. Distributed Traces: End-to-end request flow data 

captured through OpenTelemetry libraries. 

3. Logs: Structured application logs streamed into the 

RTPH ingestion layer. 

4. User Experience Signals: Synthetic user interaction 

traces and end-to-end latency measurements. 

 

These streams were fed simultaneously into the RTPH 

Data Layer to maintain a synchronized timeline across 

services. 

 

3.3. Baseline Comparison Systems 

To measure improvements, RTPH was compared against 

widely used observability stacks, including: 

 Prometheus + Grafana for metrics visualization 

 Elastic Stack for log aggregation 

 Jaeger for distributed tracing 

 Cloud-native monitoring tools (AWS CloudWatch, 

Azure Monitor) 

 

These tools represent the state-of-practice but operate on 

independent telemetry pipelines [2], [4], making them suitable 

baselines for evaluating correlation, detection speed, and 

interpretability. 

 

3.4. Evaluation Metrics 

Four key metrics were selected to quantify system 

performance: 

1. Detection Latency: Time from anomaly occurrence to 

identification. 

2. False-Positive Rate: Frequency of incorrect anomaly 

alerts. 

3. Correlation Accuracy: Ability to link anomalies across 

services or layers. 

4. Operational Overhead: CPU and memory cost 

introduced by RTPH processing. 

 

These metrics were chosen because they directly impact 

operational reliability and incident response efficiency. 

 

3.5. Procedure 

The evaluation proceeded in three phases: 

Phase 1 — Baseline Test 

Normal workload traffic was executed for several hours. 

Telemetry was collected by both RTPH and baseline tools to 

establish reference behavior and validate cross-tool 

consistency. 

 

Phase 2 — Fault Injection 

Controlled failures were introduced, including: 

 Service slowdown 

 Network latency injection 

 Resource starvation 

 Downstream dependency failure 

Faults were triggered at random intervals to prevent predictable 

patterns. 

 

Phase 3 — Observation and Analysis 

Both RTPH and baseline tools were monitored to capture: 

 How quickly anomalies were detected 

 How accurately the system correlated root causes 

 How clearly the health impact was expressed to 

operators 

Results were averaged across multiple runs to ensure 

reliability. 

 

3.6. Validation Approach 

RTPH outputs were validated by comparing: 

 Its anomaly timestamps against known fault injection 

times 

 Its health score dips against actual system behavior 

 Its correlation maps against manual trace analysis 

performed by engineers 

 

This hybrid validation approach combines quantitative 

measurement with qualitative assessment, ensuring that RTPH 

demonstrates not only statistical improvements but also 

meaningful operational insights. 

 

4. Results and Discussion 
The evaluation of the Real-Time Program Health (RTPH) 

Framework focuses on understanding how well it improves 

anomaly detection, signal correlation, and real-time visibility 

compared to existing observability tools. The experiments 

described in the methodology section were repeated across 

multiple workloads and fault scenarios to ensure consistency 

and statistical validity. The following results summarize key 

findings and highlight the advantages offered by RTPH. 
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4.1. Detection Latency 

One of the primary goals of RTPH is to reduce the time it 

takes to detect disruptions in distributed cloud environments. 

Compared to baseline monitoring tools, which rely on separate 

metric thresholds, log alerts, or trace sampling intervals, RTPH 

identifies anomalies significantly faster. 

 

Across all test runs, RTPH reduced detection latency by an 

average of 32–45%, depending on workload intensity and fault 

type. 

This improvement stems from RTPH’s ability to: 

 Continuously correlate telemetry streams across 

layers 

 Detect multi-signal deviations in real time 

 Avoid reliance on fixed sampling windows 

 

These results demonstrate that unified telemetry 

correlation can outperform isolated monitoring pipelines [2], 

[4]. 

 

4.2. False-Positive Reduction 

False positives increase alert fatigue and reduce operator 

trust in monitoring systems. Baseline tools generated alerts 

whenever a metric crossed a threshold, even when the anomaly 

did not result in meaningful service degradation. 

RTPH decreased false positives by 28–40% due to: 

 Multi-modal validation (metric + trace + log 

convergence) 

 Adaptive learning of normal behavior patterns 

 Context-aware anomaly scoring 

 

By validating alerts against correlated signals, RTPH 

eliminates noise and focuses attention on events that genuinely 

impact the system. 

 

4.3. Correlation Accuracy 

One of the most significant improvements achieved by 

RTPH is its ability to link anomalies across services, 

infrastructure layers, and user-facing paths. In fault-injection 

experiments, RTPH correctly correlated 87–93% of cross-

service anomalies, whereas baseline tools required manual 

mapping or produced fragmented insights. 

This is particularly important in microservice deployments 

where: 

 Root causes often originate far from user-facing 

failures 

 Faults propagate through dependencies 

 Traces alone lack context without supporting metrics 

 

The correlation engine within the RTPH processing layer 

delivers a more complete picture of system behavior, 

supporting findings from related research on microservice 

observability [3]. 

 

 

4.4. Health Scoring Interpretability 

The RTPH health score provides a continuous representation of 

system stability using combined signals from logs, metrics, 

traces, and user data. During evaluation, the health score 

demonstrated: 

 Smooth transitions during gradual performance 

degradation 

 Sharp drops during injected faults 

 Rapid recovery alignment once services stabilized 

 Minimal fluctuation in normal steady-state operations 

 

Operators reported that the health score allowed them to 

understand system conditions without monitoring multiple 

dashboards. This interpretability advantage is one of RTPH's 

strongest contributions, enabling faster and more informed 

decision-making. 

 

4.5. Operational Overhead 

RTPH introduces additional computation for correlation 

and ML analysis. However, in all experiments, the overhead 

remained below 8% CPU and 6% memory per node, which is 

acceptable for production-scale observability systems. 

 

This efficiency comes from: 

 Lightweight telemetry processing 

 Streamlined data pipelines 

 Distributed correlation logic 

 

Compared to enterprise observability platforms, which 

often exceed 10–15% resource overhead, RTPH offers a 

balanced trade-off between insight and performance. 

 

4.6. Summary of Findings 

The results indicate that RTPH provides meaningful 

improvements across all evaluation categories: 

 Faster anomaly detection 

 Lower false-positive rates 

 High correlation accuracy 

 Intuitive health scoring 

 Low operational overhead 

 

These findings validate the framework’s ability to offer 

real-time visibility that surpasses existing monitoring and 

observability solutions. RTPH not only enhances detection 

accuracy but also simplifies the operator experience by 

presenting a unified interpretation of distributed system 

behavior. 

 

5. Conclusion and Future Work 
Modern cloud environments generate vast streams of 

telemetry, yet the lack of real-time correlation across logs, 

metrics, traces, and user signals continues to limit operational 

visibility. Existing observability platforms offer valuable 

insights, but they evaluate each signal type independently, 

leaving engineers to interpret system behavior manually. This 
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fragmentation slows incident response and creates uncertainty 

during system degradation. The Real-Time Program Health 

(RTPH) Framework introduced in this paper addresses these 

challenges through a unified, multi-layered model that 

integrates telemetry ingestion, real-time processing, machine 

learning intelligence, and interpretable visualization. The 

experimental evaluation demonstrated that RTPH reduces 

detection latency, lowers false-positive rates, improves 

anomaly correlation accuracy, and provides a meaningful 

health score that reflects the true state of distributed systems. 

These improvements highlight the value of treating system 

health as a continuous signal derived from synchronized, cross-

layer telemetry rather than isolated measurements. While the 

results are promising, several opportunities remain for future 

development. One direction is expanding RTPH’s anomaly 

detection models with context-aware learning that adapts to 

evolving microservice architectures and dynamic scaling 

patterns. Another area involves extending the integration layer 

to support automated remediation workflows, enabling the 

system not only to detect incidents but also to trigger corrective 

actions. Finally, applying RTPH to edge computing and multi-

region deployments would provide insights into how the 

framework performs in highly distributed infrastructures with 

variable network conditions. Overall, RTPH demonstrates that 

unified program health modeling is both feasible and valuable 

for cloud operations. By shifting the focus from individual 

telemetry streams to correlated, real-time system interpretation, 

the framework lays the foundation for more resilient, self-

aware, and autonomous cloud systems. 
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