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Abstract: Cloud-native applications now run across distributed services, containers, and serverless functions, each
emitting its own logs, metrics, traces, and events. While modern observability tools collect these signals effectively, they
tend to process them in isolation, leaving engineers to manually correlate symptoms during incidents. This fragmentation
slows detection, clouds root-cause analysis, and weakens real-time understanding of program health. This paper
introduces the Real-Time Program Health (RTPH) Framework, a multi-layer model that unifies telemetry ingestion, real-
time stream processing, machine-learning-based anomaly detection, and health scoring into a single, interpretable view of
system behavior. RTPH is evaluated in a hybrid cloud environment running microservice workloads on Kubernetes, with
synthetic faults injected under controlled conditions. Its performance is compared against established observability stacks
that include metrics, logging, and tracing tools. Experimental results show that RTPH reduces anomaly detection latency
by 32-45%, lowers false-positive alerts by 28—40%, and correctly correlates 87-93% of cross-service anomalies, while
keeping CPU and memory overhead below 8% and 6% per node, respectively. These findings indicate that unified, real-
time health modeling can provide more accurate, actionable visibility into cloud deployments than traditional, signal-
specific monitoring approaches.

Keywords: Cloud Observability, Telemetry Correlation, Anomaly Detection, Real-Time Monitoring, Program Health,

Cloud-Native Systems.

1. Introduction

Cloud systems today operate as sprawling, interconnected
environments that span containers, microservices, serverless
functions, and distributed data flows. Each component runs
with its own telemetry stream, life cycle, and failure modes.
When one part of the environment slows or deviates from
expected behavior, the impact often surfaces far from the
source. Teams usually discover symptoms first errors in logs,
sudden shifts in latency, or drops in user satisfaction—and then
search for the underlying cause. This reactive pattern persists
even with modern observability tools, largely because visibility
remains scattered across independent dashboards and siloed
data streams [1]-[3]. As organizations adopt multi-cloud and
hybrid deployments, this fragmentation becomes more
pronounced. A single request may travel through several
platforms before reaching its destination. Logs reside in one
system, traces in another, and infrastructure metrics elsewhere.
Although existing solutions collect these signals effectively,
they rarely interpret them together in real time [4]. Engineers
must mentally piece together events from different tools to
understand what the system is experiencing. This manual
correlation slows diagnosis, increases operational overhead,
and introduces blind spots during critical incidents.
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Fig 1: Telemetry Fragmentation in Modern Cloud Systems.
Logs, Metrics, and Traces are Emitted Independently at
Each Span.

The growing complexity of cloud applications raises an
important challenge: how can we express system health as a
live, unified signal rather than a collection of disconnected
metrics? This challenge motivates the work in this paper.
Instead of treating metrics, logs, traces, and user interactions as
separate artifacts, we explore how they can serve as
components of a shared understanding of program health. A
cohesive model would allow engineers to detect subtle shifts in
behavior before they escalate and to interpret anomalies with
greater context. To address this need, we introduce the Real-
Time Program Health (RTPH) Framework, a novel approach
that combines telemetry ingestion, real-time correlation, and
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Al-driven analysis to produce a single, continuous
representation of system health. This model shifts observability
from a set of tools toward an integrated, dynamic perspective
capable of supporting faster decision-making and more
resilient operations.

The contributions of this work include:

1. A structured analysis of limitations in current
observability and monitoring approaches across both
open-source and commercial platforms [5]-[7].

A new architectural model that unifies telemetry
streams and computes a real-time health signal
reflecting both internal system behavior and user-
facing conditions.

A quantitative evaluation demonstrating that the
RTPH Framework improves detection latency,
reduces interpretation complexity, and strengthens
cross-layer visibility.

2. Background and Literature Review

Modern cloud applications are built from interconnected
microservices, containerized workloads, serverless functions,
and distributed data paths. This shift has brought agility and
scale, but it has also introduced deep operational complexity.
Each component emits its own telemetry logs, traces, metrics,
and events yet these signals often remain separated across
different platforms. As a result, engineers receive abundant
information but limited context, making it difficult to form an
accurate, real-time understanding of system health. Early
monitoring tools such as Nagios and Zabbix provided periodic
checks and rule-based alerting. Their models were designed for
static infrastructures where application topologies changed
infrequently. While effective in those settings, they struggle
with the dynamic, fast-changing nature of cloud-native
deployments. These limitations prompted the development of
new frameworks and standards intended to capture richer
telemetry streams. One influential example is Dapper, Google’s
distributed tracing infrastructure, which demonstrated how
request-level traces could reveal complex interactions across
large-scale systems [1]. Open-source observability stacks
expanded on this idea. Prometheus and Grafana became widely
adopted for time-series metrics, while Elastic Stack offered
scalable log aggregation and analysis. More recently,
OpenTelemetry introduced a standardized approach to
instrumenting cloud services, allowing applications to produce
consistent logs, metrics, and traces regardless of vendor or
platform [6]. These tools significantly improved the ability to
gather fine-grained telemetry across distributed services.

Despite this progress, challenges persist. Research shows
that current observability tools tend to isolate telemetry streams
rather than merge them into a cohesive narrative of system
behavior [2], [4]. Logs capture discrete events, traces show
request paths, and metrics reveal performance trends, but each
provides only a partial perspective. Engineers must perform
mental correlation to interpret how signals relate, especially
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during high-pressure incident response. This manual synthesis
slows diagnosis and increases operational risk. Work on
microservice monitoring further highlights this issue. Heinrich
et al. describe architectural metrics designed to track system-
wide behavior, yet acknowledge that visibility remains
fragmented when working across heterogeneous environments
[3]. Commercial observability platforms—Datadog, New
Relic, Dynatrace—have attempted to address this
fragmentation through unified dashboards and machine
learning features, but they still rely on separate underlying data
structures and often emphasize vendor-specific ecosystems [5].
For multi-cloud or hybrid deployments, this creates new blind
spots rather than eliminating them. Efforts to incorporate
machine learning into anomaly detection have produced
significant insights. Surveys of predictive monitoring
techniques illustrate how statistical models, clustering
methods, and deep learning architectures can detect emerging
irregularities before they trigger incidents [7]. However, these
approaches typically operate on individual telemetry types or
pre-processed datasets rather than live, correlated streams.
Their predictions may indicate unusual patterns, but they
seldom express how those patterns influence the program as a
whole.

Across these studies and tools, three consistent limitations
emerge:

1. Telemetry remains siloed: Existing systems capture
rich data but rarely combine logs, traces, metrics, and
user events into a unified, real-time interpretation of

system health.

2. Correlation is manual and reactive: Engineers must
connect symptoms across dashboards to understand
what the system is experiencing, slowing detection
and deepening operational uncertainty.

3. Cross-layer insights are limited: Infrastructure tools

describe hardware and container performance;
application tools show code-level behavior; user
metrics reveal experience. Few solutions integrate all
three layers into a single health model.

These gaps motivate the need for a framework that
interprets distributed cloud systems as cohesive, living
environments rather than sets of disjoint signals. A model that
can combine telemetry sources, correlate them in real time, and
express their relationships as a meaningful health signal would
reshape how teams identify issues, understand impact, and
maintain reliability.

2.1. Problem Statement

Cloud deployments have evolved into environments where
applications depend on distributed services, dynamic scaling
policies, and multi-cloud infrastructures. Each component
generates logs, metrics, traces, and events that describe local
behavior, yet these signals are rarely interpreted together.
Existing observability and monitoring tools collect large
volumes of telemetry, but they organize data by type rather
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than by system context [2], [4]. As a result, teams receive
detailed information about individual components without a
clear understanding of how those components influence one
another in real time. This fragmentation forces engineers to
correlate signals manually across dashboards, alerts, and
tracing tools. During performance degradation or emerging
failures, this manual effort introduces delays that extend
incident duration and complicate diagnosis. Studies in
microservice monitoring highlight how this lack of cross-layer
context increases operational uncertainty and slows mitigation
efforts [3]. Without a unified health signal, organizations
struggle to identify early signs of instability, estimate the scope
of an issue, or track the impact of an anomaly across layers of
the stack.

Traditional monitoring approaches focus on static
thresholds and individual resource checks, offering limited
insight into distributed workflows. Modern observability
platforms provide deeper visibility but still treat telemetry
streams independently, leaving the responsibility of
interpretation to the operator [4]. Predictive models introduced
in recent research improve anomaly detection but rarely
operate on live, multi-type telemetry streams or offer a
cohesive view of program health [7]. The core problem
addressed in this paper is the absence of an integrated, real-
time mechanism that combines logs, metrics, traces, and user-
experience signals into a unified representation of cloud
program health. Without such a mechanism, incident response
remains reactive, operational risk increases, and system
behavior becomes difficult to interpret in complex, fast-
changing deployments.

This gap motivates the development of the Real-Time
Program Health (RTPH) Framework, a model designed to
unify telemetry sources, correlate cross-layer signals, and
express system health as a continuous, interpretable signal
suitable for real-time decision-making. The following section
introduces the architecture and core components of this
framework.

2.2. Proposed Model:
(RTPH) Framework

The Real-Time Program Health (RTPH) Framework is
designed to unify disparate telemetry streams and express
system behavior as a continuous, interpretable health signal.
Unlike traditional monitoring platforms that evaluate logs,
metrics, and traces independently [2], [4], the RTPH model
correlates cross-layer signals to form a coherent representation
of cloud application health. The framework is organized into
five layers: data ingestion, real-time processing, intelligence,
visualization, and integration. Together, these layers create a
scalable architecture capable of evaluating distributed systems
in real time. An overview of the Real-Time Program Health
(RTPH) Framework is shown in Fig. 2.

The Real-Time Program Health
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Fig 2: High-level architecture of the Real-Time Program
Health (RTPH) Framework, showing unified telemetry
ingestion, correlation, intelligence, visualization, and
integration layers.

2.2.1. Data Layer — Unified Telemetry Ingestion

The data layer acts as the foundation of RTPH. It collects
logs, metrics, traces, and user-generated signals from
distributed components across cloud environments. By using
standard instrumentation libraries and vendor-neutral formats
such as OpenTelemetry [6], the framework ensures consistency
in how telemetry is captured.
This layer supports three goals:

1. Uniformity: Ensures that all services emit telemetry in
compatible formats.

2. Completeness: Captures signals from application,
infrastructure, and user-experience layers.

3. Continuity: Streams telemetry in real time to avoid the

delays associated with batch processing.

The output of this layer is a set of synchronized data
streams that reflect the live state of the system.

2.2.2. Processing Layer — Real-Time Stream Analytics and
Correlation

Once telemetry is ingested, the processing layer evaluates
signals using streaming engines capable of high-throughput,
low-latency analysis. Unlike existing observability pipelines
that operate on isolated signal types, RTPH fuses logs, traces,
and metrics into a unified timeline.

This layer performs three core operations:

e Temporal alignment: Synchronizes signals across
services and computes relationships between events.
Contextual correlation: Links anomalies across spans,
microservices, and infrastructure components.
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e Pattern extraction: Identifies deviations in distributed
workflows, connection chains, and request paths.

This level of correlation reduces the cognitive load on
engineers by automating what is typically a manual interpretive
task [3].

2.2.3. Intelligence Layer — AI-Driven Anomaly Detection and
Health Scoring

The intelligence layer applies machine learning models to
identify abnormal patterns in system behavior. While previous
work has explored anomaly detection on individual telemetry
types [7], RTPH evaluates multi-modal signals simultaneously.
This layer includes:

1. Anomaly Prediction Engine: Uses time-series
forecasting, clustering techniques, and neural-network
models to detect emerging irregularities before they
manifest as incidents.

2. Health Scoring Model: Generates a continuous health
score, updated in real time, that reflects correlations
across services, infrastructure metrics, and user
experience indicators. This score becomes the
unifying metric that operators can monitor instead of
tracking dozens of uncorrelated signals.

3. Adaptive Baselines: The system updates thresholds
automatically based on workload patterns rather than
relying on static, hand-tuned limits.

Together, these components transform raw telemetry into
actionable intelligence. The structure of the intelligence layer is
illustrated in Fig. 3.
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Fig 3: Intelligence layer of the RTPH Framework,
including the anomaly detection engine, adaptive baselines,
and the real-time health scoring model.

2.3. Visualization Layer — Real-Time Health Dashboards

The visualization layer converts correlated insights into
intuitive dashboards. Instead of traditional charts that display
individual time-series metrics, RTPH provides:

Live system health scores
Service dependency maps
Anomaly propagation timelines
Cross-layer event overlays

These visualizations combine telemetry streams into a
unified representation of system experience. Operators gain
immediate visibility into what is failing, why it is failing, and
how failures propagate through distributed components.

2.4. Integration Layer -—

Interfaces

To support real-world deployment, the framework includes

interfaces for integration with external systems:

e CI/CD pipelines: Inject real-time health checks into
deployment workflows.

e Incident response tools: Integrates with PagerDuty,
OpsGenie, or custom alerting.

e Existing  observability stacks: Supplements
Prometheus, Grafana, Elastic, and vendor platforms
by providing unified interpretation rather than
replacing their data collection roles.

Ecosystem and Automation

This integration layer ensures that RTPH can coexist with
existing tools, acting as a correlation and intelligence engine
rather than requiring organizations to rebuild their monitoring
infrastructure.

2.5. Novelty and Advantages of RTPH
The RTPH Framework is distinct from existing monitoring
solutions in three key ways:

1. Multi-Modal Correlation: RTPH correlates logs,
metrics, traces, and user signals into a single model—
something current tools rarely achieve [2], [4].

2. Real-Time Health Scoring: By combining machine
learning with cross-layer telemetry, RTPH generates a
live health score that captures system behavior
holistically.

3. Scalable Architecture: The layered design supports
cloud-scale workloads and distributed environments
without relying on centralized monolithic processing.

These contributions position RTPH as a robust, scalable,
and uniquely unified model for understanding program health
in modern cloud deployments.

3. Methodology

The methodology defines how the Real-Time Program
Health (RTPH) Framework was evaluated in a controlled and
repeatable environment. The goal is to assess its ability to
correlate telemetry streams, detect anomalies earlier, and
provide real-time visibility into distributed cloud applications.
To achieve this, we designed an experimental setup that
reflects modern production environments, including
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containerized microservices, hybrid cloud infrastructure, and
dynamic scaling behavior.

3.1. Experimental Environment

The evaluation environment consists of a multi-node
Kubernetes cluster deployed across a hybrid cloud setup. Each
node hosts containerized microservices representing typical
application workloads such as API gateways, data processors,
and user-facing services. These services were instrumented
with Open Telemetry for uniform collection of logs, metrics,
and traces [6]. A synthetic workload generator was used to
simulate realistic traffic patterns and to trigger fault conditions
such as latency spikes, resource throttling, and service
interruptions. This approach ensures consistency across test
runs and enables direct comparison with baseline observability
tools.

3.2. Telemetry Collection and Data Sources
Telemetry was collected from four primary sources:

1. Application Metrics: CPU, memory, request
throughput, and latency exported via Prometheus
endpoints.

2. Distributed Traces: End-to-end request flow data
captured through OpenTelemetry libraries.

3. Logs: Structured application logs streamed into the
RTPH ingestion layer.

4. User Experience Signals: Synthetic user interaction

traces and end-to-end latency measurements.

These streams were fed simultaneously into the RTPH
Data Layer to maintain a synchronized timeline across
services.

3.3. Baseline Comparison Systems
To measure improvements, RTPH was compared against
widely used observability stacks, including:

e  Prometheus + Grafana for metrics visualization
Elastic Stack for log aggregation
Jaeger for distributed tracing
Cloud-native monitoring tools (AWS CloudWatch,
Azure Monitor)

These tools represent the state-of-practice but operate on
independent telemetry pipelines [2], [4], making them suitable
baselines for evaluating correlation, detection speed, and
interpretability.

3.4. Evaluation Metrics

Four key metrics were selected to quantify system
performance:
1. Detection Latency: Time from anomaly occurrence to
identification.
2. False-Positive Rate: Frequency of incorrect anomaly
alerts.
3. Correlation Accuracy: Ability to link anomalies across

services or layers.
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4. Operational Overhead: CPU and memory cost
introduced by RTPH processing.

These metrics were chosen because they directly impact
operational reliability and incident response efficiency.

3.5. Procedure

The evaluation proceeded in three phases:

Phase 1 — Baseline Test

Normal workload traffic was executed for several hours.
Telemetry was collected by both RTPH and baseline tools to
establish reference behavior and validate cross-tool
consistency.

Phase 2 — Fault Injection
Controlled failures were introduced, including:
e Service slowdown
Network latency injection
Resource starvation
Downstream dependency failure
Faults were triggered at random intervals to prevent predictable
patterns.

Phase 3 — Observation and Analysis
Both RTPH and baseline tools were monitored to capture:

e How quickly anomalies were detected
How accurately the system correlated root causes
How clearly the health impact was expressed to
operators

Results were averaged across multiple runs to ensure
reliability.

3.6. Validation Approach
RTPH outputs were validated by comparing:

e Its anomaly timestamps against known fault injection
times
Its health score dips against actual system behavior
Its correlation maps against manual trace analysis
performed by engineers

This hybrid validation approach combines quantitative
measurement with qualitative assessment, ensuring that RTPH
demonstrates not only statistical improvements but also
meaningful operational insights.

4. Results and Discussion

The evaluation of the Real-Time Program Health (RTPH)
Framework focuses on understanding how well it improves
anomaly detection, signal correlation, and real-time visibility
compared to existing observability tools. The experiments
described in the methodology section were repeated across
multiple workloads and fault scenarios to ensure consistency
and statistical validity. The following results summarize key
findings and highlight the advantages offered by RTPH.




Soumya Remella / IJAIBDCMS, 6(4), 154-160, 2025

4.1. Detection Latency

One of the primary goals of RTPH is to reduce the time it
takes to detect disruptions in distributed cloud environments.
Compared to baseline monitoring tools, which rely on separate
metric thresholds, log alerts, or trace sampling intervals, RTPH
identifies anomalies significantly faster.

Across all test runs, RTPH reduced detection latency by an
average of 32—45%, depending on workload intensity and fault

type.
This improvement stems from RTPH’s ability to:

e Continuously correlate telemetry streams across
layers

e  Detect multi-signal deviations in real time

e  Avoid reliance on fixed sampling windows

These results demonstrate that unified telemetry

correlation can outperform isolated monitoring pipelines [2],

[4].

4.2. False-Positive Reduction

False positives increase alert fatigue and reduce operator
trust in monitoring systems. Baseline tools generated alerts
whenever a metric crossed a threshold, even when the anomaly
did not result in meaningful service degradation.
RTPH decreased false positives by 28—40% due to:
Multi-modal validation (metric + trace +
convergence)
Adaptive learning of normal behavior patterns
Context-aware anomaly scoring

log

By wvalidating alerts against correlated signals, RTPH
eliminates noise and focuses attention on events that genuinely
impact the system.

4.3. Correlation Accuracy
One of the most significant improvements achieved by
RTPH is its ability to link anomalies across services,
infrastructure layers, and user-facing paths. In fault-injection
experiments, RTPH correctly correlated 87-93% of cross-
service anomalies, whereas baseline tools required manual
mapping or produced fragmented insights.
This is particularly important in microservice deployments
where:
e Root causes often originate far from user-facing
failures
Faults propagate through dependencies

Traces alone lack context without supporting metrics

The correlation engine within the RTPH processing layer
delivers a more complete picture of system behavior,
supporting findings from related research on microservice
observability [3].
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4.4. Health Scoring Interpretability

The RTPH health score provides a continuous representation of
system stability using combined signals from logs, metrics,
traces, and user data. During evaluation, the health score
demonstrated:

Smooth transitions
degradation

Sharp drops during injected faults

Rapid recovery alignment once services stabilized
Minimal fluctuation in normal steady-state operations

. during gradual performance

Operators reported that the health score allowed them to
understand system conditions without monitoring multiple
dashboards. This interpretability advantage is one of RTPH's
strongest contributions, enabling faster and more informed
decision-making.

4.5. Operational Overhead

RTPH introduces additional computation for correlation
and ML analysis. However, in all experiments, the overhead
remained below 8% CPU and 6% memory per node, which is
acceptable for production-scale observability systems.

This efficiency comes from:

Lightweight telemetry processing
Streamlined data pipelines
Distributed correlation logic

Compared to enterprise observability platforms, which
often exceed 10-15% resource overhead, RTPH offers a
balanced trade-off between insight and performance.

4.6. Summary of Findings

The results indicate that RTPH provides
improvements across all evaluation categories:
Faster anomaly detection

Lower false-positive rates

High correlation accuracy

Intuitive health scoring

Low operational overhead

meaningful

These findings validate the framework’s ability to offer
real-time visibility that surpasses existing monitoring and
observability solutions. RTPH not only enhances detection
accuracy but also simplifies the operator experience by
presenting a unified interpretation of distributed system
behavior.

S. Conclusion and Future Work

Modern cloud environments generate vast streams of
telemetry, yet the lack of real-time correlation across logs,
metrics, traces, and user signals continues to limit operational
visibility. Existing observability platforms offer valuable
insights, but they evaluate each signal type independently,
leaving engineers to interpret system behavior manually. This
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fragmentation slows incident response and creates uncertainty
during system degradation. The Real-Time Program Health
(RTPH) Framework introduced in this paper addresses these
challenges through a unified, multi-layered model that
integrates telemetry ingestion, real-time processing, machine
learning intelligence, and interpretable visualization. The
experimental evaluation demonstrated that RTPH reduces
detection latency, lowers false-positive rates, improves
anomaly correlation accuracy, and provides a meaningful
health score that reflects the true state of distributed systems.
These improvements highlight the value of treating system
health as a continuous signal derived from synchronized, cross-
layer telemetry rather than isolated measurements. While the
results are promising, several opportunities remain for future
development. One direction is expanding RTPH’s anomaly
detection models with context-aware learning that adapts to
evolving microservice architectures and dynamic scaling
patterns. Another area involves extending the integration layer
to support automated remediation workflows, enabling the
system not only to detect incidents but also to trigger corrective
actions. Finally, applying RTPH to edge computing and multi-
region deployments would provide insights into how the
framework performs in highly distributed infrastructures with
variable network conditions. Overall, RTPH demonstrates that
unified program health modeling is both feasible and valuable
for cloud operations. By shifting the focus from individual
telemetry streams to correlated, real-time system interpretation,
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the framework lays the foundation for more resilient, self-
aware, and autonomous cloud systems.
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