

End-to-End Visibility in Cloud Deployments: Building Real-Time Program Health Systems

Soumya Remella

Independent Researcher, USA.

Received On: 25/09/2025

Revised On: 28/10/2025

Accepted On: 08/11/2025

Published On: 19/11/2025

Abstract: Cloud-native applications now run across distributed services, containers, and serverless functions, each emitting its own logs, metrics, traces, and events. While modern observability tools collect these signals effectively, they tend to process them in isolation, leaving engineers to manually correlate symptoms during incidents. This fragmentation slows detection, clouds root-cause analysis, and weakens real-time understanding of program health. This paper introduces the Real-Time Program Health (RTPH) Framework, a multi-layer model that unifies telemetry ingestion, real-time stream processing, machine-learning-based anomaly detection, and health scoring into a single, interpretable view of system behavior. RTPH is evaluated in a hybrid cloud environment running microservice workloads on Kubernetes, with synthetic faults injected under controlled conditions. Its performance is compared against established observability stacks that include metrics, logging, and tracing tools. Experimental results show that RTPH reduces anomaly detection latency by 32–45%, lowers false-positive alerts by 28–40%, and correctly correlates 87–93% of cross-service anomalies, while keeping CPU and memory overhead below 8% and 6% per node, respectively. These findings indicate that unified, real-time health modeling can provide more accurate, actionable visibility into cloud deployments than traditional, signal-specific monitoring approaches.

Keywords: Cloud Observability, Telemetry Correlation, Anomaly Detection, Real-Time Monitoring, Program Health, Cloud-Native Systems.

1. Introduction

Cloud systems today operate as sprawling, interconnected environments that span containers, microservices, serverless functions, and distributed data flows. Each component runs with its own telemetry stream, life cycle, and failure modes. When one part of the environment slows or deviates from expected behavior, the impact often surfaces far from the source. Teams usually discover symptoms first errors in logs, sudden shifts in latency, or drops in user satisfaction—and then search for the underlying cause. This reactive pattern persists even with modern observability tools, largely because visibility remains scattered across independent dashboards and siloed data streams [1]–[3]. As organizations adopt multi-cloud and hybrid deployments, this fragmentation becomes more pronounced. A single request may travel through several platforms before reaching its destination. Logs reside in one system, traces in another, and infrastructure metrics elsewhere. Although existing solutions collect these signals effectively, they rarely interpret them together in real time [4]. Engineers must mentally piece together events from different tools to understand what the system is experiencing. This manual correlation slows diagnosis, increases operational overhead, and introduces blind spots during critical incidents.

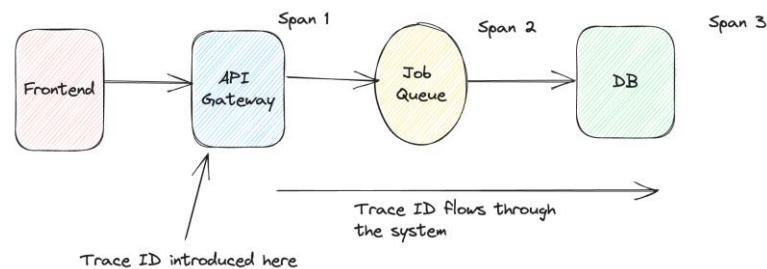


Fig 1: Telemetry Fragmentation in Modern Cloud Systems.
Logs, Metrics, and Traces are Emitted Independently at Each Span.

The growing complexity of cloud applications raises an important challenge: how can we express system health as a live, unified signal rather than a collection of disconnected metrics? This challenge motivates the work in this paper. Instead of treating metrics, logs, traces, and user interactions as separate artifacts, we explore how they can serve as components of a shared understanding of program health. A cohesive model would allow engineers to detect subtle shifts in behavior before they escalate and to interpret anomalies with greater context. To address this need, we introduce the Real-Time Program Health (RTPH) Framework, a novel approach that combines telemetry ingestion, real-time correlation, and

AI-driven analysis to produce a single, continuous representation of system health. This model shifts observability from a set of tools toward an integrated, dynamic perspective capable of supporting faster decision-making and more resilient operations.

The contributions of this work include:

1. A structured analysis of limitations in current observability and monitoring approaches across both open-source and commercial platforms [5]–[7].
2. A new architectural model that unifies telemetry streams and computes a real-time health signal reflecting both internal system behavior and user-facing conditions.
3. A quantitative evaluation demonstrating that the RTPH Framework improves detection latency, reduces interpretation complexity, and strengthens cross-layer visibility.

2. Background and Literature Review

Modern cloud applications are built from interconnected microservices, containerized workloads, serverless functions, and distributed data paths. This shift has brought agility and scale, but it has also introduced deep operational complexity. Each component emits its own telemetry logs, traces, metrics, and events yet these signals often remain separated across different platforms. As a result, engineers receive abundant information but limited context, making it difficult to form an accurate, real-time understanding of system health. Early monitoring tools such as Nagios and Zabbix provided periodic checks and rule-based alerting. Their models were designed for static infrastructures where application topologies changed infrequently. While effective in those settings, they struggle with the dynamic, fast-changing nature of cloud-native deployments. These limitations prompted the development of new frameworks and standards intended to capture richer telemetry streams. One influential example is Dapper, Google's distributed tracing infrastructure, which demonstrated how request-level traces could reveal complex interactions across large-scale systems [1]. Open-source observability stacks expanded on this idea. Prometheus and Grafana became widely adopted for time-series metrics, while Elastic Stack offered scalable log aggregation and analysis. More recently, OpenTelemetry introduced a standardized approach to instrumenting cloud services, allowing applications to produce consistent logs, metrics, and traces regardless of vendor or platform [6]. These tools significantly improved the ability to gather fine-grained telemetry across distributed services.

Despite this progress, challenges persist. Research shows that current observability tools tend to isolate telemetry streams rather than merge them into a cohesive narrative of system behavior [2], [4]. Logs capture discrete events, traces show request paths, and metrics reveal performance trends, but each provides only a partial perspective. Engineers must perform mental correlation to interpret how signals relate, especially

during high-pressure incident response. This manual synthesis slows diagnosis and increases operational risk. Work on microservice monitoring further highlights this issue. Heinrich et al. describe architectural metrics designed to track system-wide behavior, yet acknowledge that visibility remains fragmented when working across heterogeneous environments [3]. Commercial observability platforms—Datadog, New Relic, Dynatrace—have attempted to address this fragmentation through unified dashboards and machine learning features, but they still rely on separate underlying data structures and often emphasize vendor-specific ecosystems [5]. For multi-cloud or hybrid deployments, this creates new blind spots rather than eliminating them. Efforts to incorporate machine learning into anomaly detection have produced significant insights. Surveys of predictive monitoring techniques illustrate how statistical models, clustering methods, and deep learning architectures can detect emerging irregularities before they trigger incidents [7]. However, these approaches typically operate on individual telemetry types or pre-processed datasets rather than live, correlated streams. Their predictions may indicate unusual patterns, but they seldom express how those patterns influence the program as a whole.

Across these studies and tools, three consistent limitations emerge:

1. Telemetry remains siloed: Existing systems capture rich data but rarely combine logs, traces, metrics, and user events into a unified, real-time interpretation of system health.
2. Correlation is manual and reactive: Engineers must connect symptoms across dashboards to understand what the system is experiencing, slowing detection and deepening operational uncertainty.
3. Cross-layer insights are limited: Infrastructure tools describe hardware and container performance; application tools show code-level behavior; user metrics reveal experience. Few solutions integrate all three layers into a single health model.

These gaps motivate the need for a framework that interprets distributed cloud systems as cohesive, living environments rather than sets of disjoint signals. A model that can combine telemetry sources, correlate them in real time, and express their relationships as a meaningful health signal would reshape how teams identify issues, understand impact, and maintain reliability.

2.1. Problem Statement

Cloud deployments have evolved into environments where applications depend on distributed services, dynamic scaling policies, and multi-cloud infrastructures. Each component generates logs, metrics, traces, and events that describe local behavior, yet these signals are rarely interpreted together. Existing observability and monitoring tools collect large volumes of telemetry, but they organize data by type rather

than by system context [2], [4]. As a result, teams receive detailed information about individual components without a clear understanding of how those components influence one another in real time. This fragmentation forces engineers to correlate signals manually across dashboards, alerts, and tracing tools. During performance degradation or emerging failures, this manual effort introduces delays that extend incident duration and complicate diagnosis. Studies in microservice monitoring highlight how this lack of cross-layer context increases operational uncertainty and slows mitigation efforts [3]. Without a unified health signal, organizations struggle to identify early signs of instability, estimate the scope of an issue, or track the impact of an anomaly across layers of the stack.

Traditional monitoring approaches focus on static thresholds and individual resource checks, offering limited insight into distributed workflows. Modern observability platforms provide deeper visibility but still treat telemetry streams independently, leaving the responsibility of interpretation to the operator [4]. Predictive models introduced in recent research improve anomaly detection but rarely operate on live, multi-type telemetry streams or offer a cohesive view of program health [7]. The core problem addressed in this paper is the absence of an integrated, real-time mechanism that combines logs, metrics, traces, and user-experience signals into a unified representation of cloud program health. Without such a mechanism, incident response remains reactive, operational risk increases, and system behavior becomes difficult to interpret in complex, fast-changing deployments.

This gap motivates the development of the Real-Time Program Health (RTPH) Framework, a model designed to unify telemetry sources, correlate cross-layer signals, and express system health as a continuous, interpretable signal suitable for real-time decision-making. The following section introduces the architecture and core components of this framework.

2.2. Proposed Model: The Real-Time Program Health (RTPH) Framework

The Real-Time Program Health (RTPH) Framework is designed to unify disparate telemetry streams and express system behavior as a continuous, interpretable health signal. Unlike traditional monitoring platforms that evaluate logs, metrics, and traces independently [2], [4], the RTPH model correlates cross-layer signals to form a coherent representation of cloud application health. The framework is organized into five layers: data ingestion, real-time processing, intelligence, visualization, and integration. Together, these layers create a scalable architecture capable of evaluating distributed systems in real time. An overview of the Real-Time Program Health (RTPH) Framework is shown in Fig. 2.

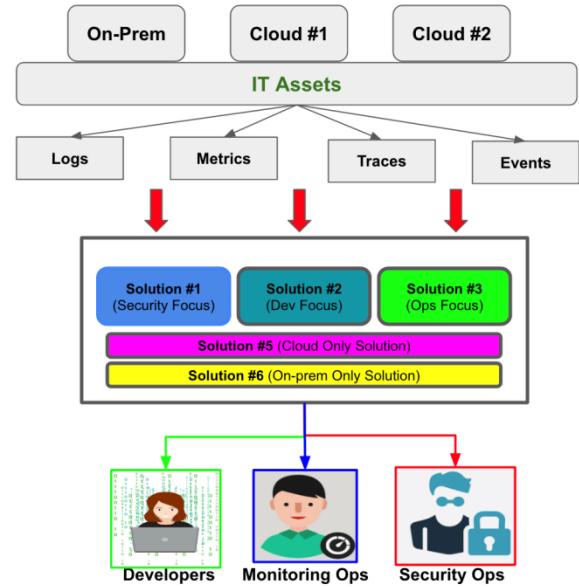


Fig 2: High-level architecture of the Real-Time Program Health (RTPH) Framework, showing unified telemetry ingestion, correlation, intelligence, visualization, and integration layers.

2.2.1. Data Layer – Unified Telemetry Ingestion

The data layer acts as the foundation of RTPH. It collects logs, metrics, traces, and user-generated signals from distributed components across cloud environments. By using standard instrumentation libraries and vendor-neutral formats such as OpenTelemetry [6], the framework ensures consistency in how telemetry is captured.

This layer supports three goals:

1. Uniformity: Ensures that all services emit telemetry in compatible formats.
2. Completeness: Captures signals from application, infrastructure, and user-experience layers.
3. Continuity: Streams telemetry in real time to avoid the delays associated with batch processing.

The output of this layer is a set of synchronized data streams that reflect the live state of the system.

2.2.2. Processing Layer – Real-Time Stream Analytics and Correlation

Once telemetry is ingested, the processing layer evaluates signals using streaming engines capable of high-throughput, low-latency analysis. Unlike existing observability pipelines that operate on isolated signal types, RTPH fuses logs, traces, and metrics into a unified timeline.

This layer performs three core operations:

- Temporal alignment: Synchronizes signals across services and computes relationships between events.
- Contextual correlation: Links anomalies across spans, microservices, and infrastructure components.

- Pattern extraction: Identifies deviations in distributed workflows, connection chains, and request paths.

This level of correlation reduces the cognitive load on engineers by automating what is typically a manual interpretive task [3].

2.2.3. Intelligence Layer – AI-Driven Anomaly Detection and Health Scoring

The intelligence layer applies machine learning models to identify abnormal patterns in system behavior. While previous work has explored anomaly detection on individual telemetry types [7], RTPH evaluates multi-modal signals simultaneously. This layer includes:

1. Anomaly Prediction Engine: Uses time-series forecasting, clustering techniques, and neural-network models to detect emerging irregularities before they manifest as incidents.
2. Health Scoring Model: Generates a continuous health score, updated in real time, that reflects correlations across services, infrastructure metrics, and user experience indicators. This score becomes the unifying metric that operators can monitor instead of tracking dozens of uncorrelated signals.
3. Adaptive Baselines: The system updates thresholds automatically based on workload patterns rather than relying on static, hand-tuned limits.

Together, these components transform raw telemetry into actionable intelligence. The structure of the intelligence layer is illustrated in Fig. 3.

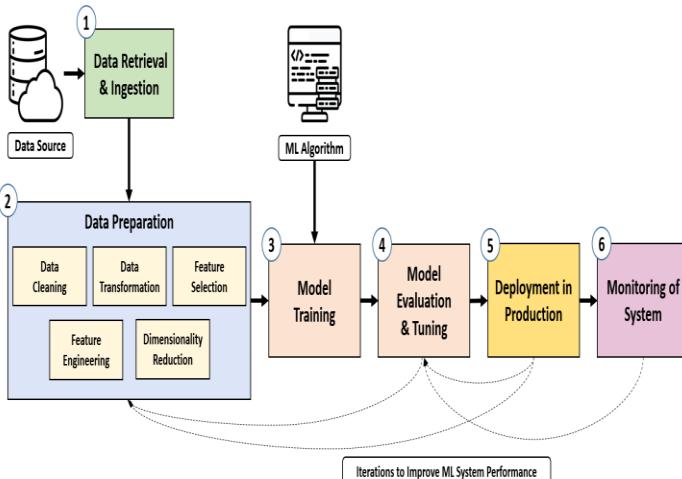


Fig 3: Intelligence layer of the RTPH Framework, including the anomaly detection engine, adaptive baselines, and the real-time health scoring model.

2.3. Visualization Layer – Real-Time Health Dashboards

The visualization layer converts correlated insights into intuitive dashboards. Instead of traditional charts that display individual time-series metrics, RTPH provides:

- Live system health scores
- Service dependency maps
- Anomaly propagation timelines
- Cross-layer event overlays

These visualizations combine telemetry streams into a unified representation of system experience. Operators gain immediate visibility into what is failing, why it is failing, and how failures propagate through distributed components.

2.4. Integration Layer – Ecosystem and Automation Interfaces

To support real-world deployment, the framework includes interfaces for integration with external systems:

- CI/CD pipelines: Inject real-time health checks into deployment workflows.
- Incident response tools: Integrates with PagerDuty, OpsGenie, or custom alerting.
- Existing observability stacks: Supplements Prometheus, Grafana, Elastic, and vendor platforms by providing unified interpretation rather than replacing their data collection roles.

This integration layer ensures that RTPH can coexist with existing tools, acting as a correlation and intelligence engine rather than requiring organizations to rebuild their monitoring infrastructure.

2.5. Novelty and Advantages of RTPH

The RTPH Framework is distinct from existing monitoring solutions in three key ways:

1. Multi-Modal Correlation: RTPH correlates logs, metrics, traces, and user signals into a single model—something current tools rarely achieve [2], [4].
2. Real-Time Health Scoring: By combining machine learning with cross-layer telemetry, RTPH generates a live health score that captures system behavior holistically.
3. Scalable Architecture: The layered design supports cloud-scale workloads and distributed environments without relying on centralized monolithic processing.

These contributions position RTPH as a robust, scalable, and uniquely unified model for understanding program health in modern cloud deployments.

3. Methodology

The methodology defines how the Real-Time Program Health (RTPH) Framework was evaluated in a controlled and repeatable environment. The goal is to assess its ability to correlate telemetry streams, detect anomalies earlier, and provide real-time visibility into distributed cloud applications. To achieve this, we designed an experimental setup that reflects modern production environments, including

containerized microservices, hybrid cloud infrastructure, and dynamic scaling behavior.

3.1. Experimental Environment

The evaluation environment consists of a multi-node Kubernetes cluster deployed across a hybrid cloud setup. Each node hosts containerized microservices representing typical application workloads such as API gateways, data processors, and user-facing services. These services were instrumented with Open Telemetry for uniform collection of logs, metrics, and traces [6]. A synthetic workload generator was used to simulate realistic traffic patterns and to trigger fault conditions such as latency spikes, resource throttling, and service interruptions. This approach ensures consistency across test runs and enables direct comparison with baseline observability tools.

3.2. Telemetry Collection and Data Sources

Telemetry was collected from four primary sources:

1. Application Metrics: CPU, memory, request throughput, and latency exported via Prometheus endpoints.
2. Distributed Traces: End-to-end request flow data captured through OpenTelemetry libraries.
3. Logs: Structured application logs streamed into the RTPH ingestion layer.
4. User Experience Signals: Synthetic user interaction traces and end-to-end latency measurements.

These streams were fed simultaneously into the RTPH Data Layer to maintain a synchronized timeline across services.

3.3. Baseline Comparison Systems

To measure improvements, RTPH was compared against widely used observability stacks, including:

- Prometheus + Grafana for metrics visualization
- Elastic Stack for log aggregation
- Jaeger for distributed tracing
- Cloud-native monitoring tools (AWS CloudWatch, Azure Monitor)

These tools represent the state-of-practice but operate on independent telemetry pipelines [2], [4], making them suitable baselines for evaluating correlation, detection speed, and interpretability.

3.4. Evaluation Metrics

Four key metrics were selected to quantify system performance:

1. Detection Latency: Time from anomaly occurrence to identification.
2. False-Positive Rate: Frequency of incorrect anomaly alerts.
3. Correlation Accuracy: Ability to link anomalies across services or layers.

4. Operational Overhead: CPU and memory cost introduced by RTPH processing.

These metrics were chosen because they directly impact operational reliability and incident response efficiency.

3.5. Procedure

The evaluation proceeded in three phases:

Phase 1 — Baseline Test

Normal workload traffic was executed for several hours. Telemetry was collected by both RTPH and baseline tools to establish reference behavior and validate cross-tool consistency.

Phase 2 — Fault Injection

Controlled failures were introduced, including:

- Service slowdown
- Network latency injection
- Resource starvation
- Downstream dependency failure

Faults were triggered at random intervals to prevent predictable patterns.

Phase 3 — Observation and Analysis

Both RTPH and baseline tools were monitored to capture:

- How quickly anomalies were detected
- How accurately the system correlated root causes
- How clearly the health impact was expressed to operators

Results were averaged across multiple runs to ensure reliability.

3.6. Validation Approach

RTPH outputs were validated by comparing:

- Its anomaly timestamps against known fault injection times
- Its health score dips against actual system behavior
- Its correlation maps against manual trace analysis performed by engineers

This hybrid validation approach combines quantitative measurement with qualitative assessment, ensuring that RTPH demonstrates not only statistical improvements but also meaningful operational insights.

4. Results and Discussion

The evaluation of the Real-Time Program Health (RTPH) Framework focuses on understanding how well it improves anomaly detection, signal correlation, and real-time visibility compared to existing observability tools. The experiments described in the methodology section were repeated across multiple workloads and fault scenarios to ensure consistency and statistical validity. The following results summarize key findings and highlight the advantages offered by RTPH.

4.1. Detection Latency

One of the primary goals of RTPH is to reduce the time it takes to detect disruptions in distributed cloud environments. Compared to baseline monitoring tools, which rely on separate metric thresholds, log alerts, or trace sampling intervals, RTPH identifies anomalies significantly faster.

Across all test runs, RTPH reduced detection latency by an average of 32–45%, depending on workload intensity and fault type.

This improvement stems from RTPH's ability to:

- Continuously correlate telemetry streams across layers
- Detect multi-signal deviations in real time
- Avoid reliance on fixed sampling windows

These results demonstrate that unified telemetry correlation can outperform isolated monitoring pipelines [2], [4].

4.2. False-Positive Reduction

False positives increase alert fatigue and reduce operator trust in monitoring systems. Baseline tools generated alerts whenever a metric crossed a threshold, even when the anomaly did not result in meaningful service degradation.

RTPH decreased false positives by 28–40% due to:

- Multi-modal validation (metric + trace + log convergence)
- Adaptive learning of normal behavior patterns
- Context-aware anomaly scoring

By validating alerts against correlated signals, RTPH eliminates noise and focuses attention on events that genuinely impact the system.

4.3. Correlation Accuracy

One of the most significant improvements achieved by RTPH is its ability to link anomalies across services, infrastructure layers, and user-facing paths. In fault-injection experiments, RTPH correctly correlated 87–93% of cross-service anomalies, whereas baseline tools required manual mapping or produced fragmented insights.

This is particularly important in microservice deployments where:

- Root causes often originate far from user-facing failures
- Faults propagate through dependencies
- Traces alone lack context without supporting metrics

The correlation engine within the RTPH processing layer delivers a more complete picture of system behavior, supporting findings from related research on microservice observability [3].

4.4. Health Scoring Interpretability

The RTPH health score provides a continuous representation of system stability using combined signals from logs, metrics, traces, and user data. During evaluation, the health score demonstrated:

- Smooth transitions during gradual performance degradation
- Sharp drops during injected faults
- Rapid recovery alignment once services stabilized
- Minimal fluctuation in normal steady-state operations

Operators reported that the health score allowed them to understand system conditions without monitoring multiple dashboards. This interpretability advantage is one of RTPH's strongest contributions, enabling faster and more informed decision-making.

4.5. Operational Overhead

RTPH introduces additional computation for correlation and ML analysis. However, in all experiments, the overhead remained below 8% CPU and 6% memory per node, which is acceptable for production-scale observability systems.

This efficiency comes from:

- Lightweight telemetry processing
- Streamlined data pipelines
- Distributed correlation logic

Compared to enterprise observability platforms, which often exceed 10–15% resource overhead, RTPH offers a balanced trade-off between insight and performance.

4.6. Summary of Findings

The results indicate that RTPH provides meaningful improvements across all evaluation categories:

- Faster anomaly detection
- Lower false-positive rates
- High correlation accuracy
- Intuitive health scoring
- Low operational overhead

These findings validate the framework's ability to offer real-time visibility that surpasses existing monitoring and observability solutions. RTPH not only enhances detection accuracy but also simplifies the operator experience by presenting a unified interpretation of distributed system behavior.

5. Conclusion and Future Work

Modern cloud environments generate vast streams of telemetry, yet the lack of real-time correlation across logs, metrics, traces, and user signals continues to limit operational visibility. Existing observability platforms offer valuable insights, but they evaluate each signal type independently, leaving engineers to interpret system behavior manually. This

fragmentation slows incident response and creates uncertainty during system degradation. The Real-Time Program Health (RTPH) Framework introduced in this paper addresses these challenges through a unified, multi-layered model that integrates telemetry ingestion, real-time processing, machine learning intelligence, and interpretable visualization. The experimental evaluation demonstrated that RTPH reduces detection latency, lowers false-positive rates, improves anomaly correlation accuracy, and provides a meaningful health score that reflects the true state of distributed systems. These improvements highlight the value of treating system health as a continuous signal derived from synchronized, cross-layer telemetry rather than isolated measurements. While the results are promising, several opportunities remain for future development. One direction is expanding RTPH's anomaly detection models with context-aware learning that adapts to evolving microservice architectures and dynamic scaling patterns. Another area involves extending the integration layer to support automated remediation workflows, enabling the system not only to detect incidents but also to trigger corrective actions. Finally, applying RTPH to edge computing and multi-region deployments would provide insights into how the framework performs in highly distributed infrastructures with variable network conditions. Overall, RTPH demonstrates that unified program health modeling is both feasible and valuable for cloud operations. By shifting the focus from individual telemetry streams to correlated, real-time system interpretation,

the framework lays the foundation for more resilient, self-aware, and autonomous cloud systems.

References

- [1] B. Sigelman et al., "Dapper, a Large-Scale Distributed Systems Tracing Infrastructure," Google, Technical Report, 2010.
- [2] P. Sharma, S. Rathore, and S. Park, "A Survey on Monitoring and Observability of Cloud-Native Systems," *IEEE Access*, vol. 9, pp. 162785–162802, 2021.
- [3] R. Heinrich et al., "Architectural Metrics for Microservice Monitoring," in Proc. IEEE/IFIP Conf. on Software Architecture (ICSA), 2020, pp. 145–154.
- [4] C. Heger, A. van Hoorn, and D. Okanovic, "Application Performance Monitoring: From Black Box to Open Observability," *ACM Comput. Surveys*, vol. 54, no. 4, pp. 1–35, 2022.
- [5] R. Burns, "Observability for Modern Applications," *ACM Queue*, vol. 19, no. 5, 2021.
- [6] OpenTelemetry, "OpenTelemetry Project Documentation," CNCF, 2023. [Online]. Available: <https://opentelemetry.io>
- [7] A. Mukhopadhyay et al., "Survey of Machine Learning Techniques for Anomaly Detection in Cloud Systems," *IEEE Trans. on Neural Networks and Learning Systems*, vol. 33, no. 9, pp. 4485–4505, 2022.