
International Journal of AI, BigData, Computational and Management Studies

Noble Scholar Research Group | Volume 6, Issue 4, PP 154-160, 2025

ISSN: 3050-9416 | https://doi.org/10.63282/3050-9416.IJAIBDCMS-V6I4P117

Original Article

End-to-End Visibility in Cloud Deployments: Building

Real-Time Program Health Systems

Soumya Remella

Independent Researcher, USA.

Received On: 25/09/2025 Revised On: 28/10/2025 Accepted On: 08/11/2025 Published On: 19/11/2025

Abstract: Cloud-native applications now run across distributed services, containers, and serverless functions, each

emitting its own logs, metrics, traces, and events. While modern observability tools collect these signals effectively, they

tend to process them in isolation, leaving engineers to manually correlate symptoms during incidents. This fragmentation

slows detection, clouds root-cause analysis, and weakens real-time understanding of program health. This paper

introduces the Real-Time Program Health (RTPH) Framework, a multi-layer model that unifies telemetry ingestion, real-

time stream processing, machine-learning-based anomaly detection, and health scoring into a single, interpretable view of

system behavior. RTPH is evaluated in a hybrid cloud environment running microservice workloads on Kubernetes, with

synthetic faults injected under controlled conditions. Its performance is compared against established observability stacks

that include metrics, logging, and tracing tools. Experimental results show that RTPH reduces anomaly detection latency

by 32–45%, lowers false-positive alerts by 28–40%, and correctly correlates 87–93% of cross-service anomalies, while

keeping CPU and memory overhead below 8% and 6% per node, respectively. These findings indicate that unified, real-

time health modeling can provide more accurate, actionable visibility into cloud deployments than traditional, signal-

specific monitoring approaches.

Keywords: Cloud Observability, Telemetry Correlation, Anomaly Detection, Real-Time Monitoring, Program Health,

Cloud-Native Systems.

1. Introduction
Cloud systems today operate as sprawling, interconnected

environments that span containers, microservices, serverless

functions, and distributed data flows. Each component runs

with its own telemetry stream, life cycle, and failure modes.

When one part of the environment slows or deviates from

expected behavior, the impact often surfaces far from the

source. Teams usually discover symptoms first errors in logs,

sudden shifts in latency, or drops in user satisfaction—and then

search for the underlying cause. This reactive pattern persists

even with modern observability tools, largely because visibility

remains scattered across independent dashboards and siloed

data streams [1]–[3]. As organizations adopt multi-cloud and

hybrid deployments, this fragmentation becomes more

pronounced. A single request may travel through several

platforms before reaching its destination. Logs reside in one

system, traces in another, and infrastructure metrics elsewhere.

Although existing solutions collect these signals effectively,

they rarely interpret them together in real time [4]. Engineers

must mentally piece together events from different tools to

understand what the system is experiencing. This manual

correlation slows diagnosis, increases operational overhead,

and introduces blind spots during critical incidents.

Fig 1: Telemetry Fragmentation in Modern Cloud Systems.

Logs, Metrics, and Traces are Emitted Independently at

Each Span.

The growing complexity of cloud applications raises an

important challenge: how can we express system health as a

live, unified signal rather than a collection of disconnected

metrics? This challenge motivates the work in this paper.

Instead of treating metrics, logs, traces, and user interactions as

separate artifacts, we explore how they can serve as

components of a shared understanding of program health. A

cohesive model would allow engineers to detect subtle shifts in

behavior before they escalate and to interpret anomalies with

greater context. To address this need, we introduce the Real-

Time Program Health (RTPH) Framework, a novel approach

that combines telemetry ingestion, real-time correlation, and

Soumya Remella / IJAIBDCMS, 6(4), 154-160, 2025

155

AI-driven analysis to produce a single, continuous

representation of system health. This model shifts observability

from a set of tools toward an integrated, dynamic perspective

capable of supporting faster decision-making and more

resilient operations.

The contributions of this work include:

1. A structured analysis of limitations in current

observability and monitoring approaches across both

open-source and commercial platforms [5]–[7].

2. A new architectural model that unifies telemetry

streams and computes a real-time health signal

reflecting both internal system behavior and user-

facing conditions.

3. A quantitative evaluation demonstrating that the

RTPH Framework improves detection latency,

reduces interpretation complexity, and strengthens

cross-layer visibility.

2. Background and Literature Review
Modern cloud applications are built from interconnected

microservices, containerized workloads, serverless functions,

and distributed data paths. This shift has brought agility and

scale, but it has also introduced deep operational complexity.

Each component emits its own telemetry logs, traces, metrics,

and events yet these signals often remain separated across

different platforms. As a result, engineers receive abundant

information but limited context, making it difficult to form an

accurate, real-time understanding of system health. Early

monitoring tools such as Nagios and Zabbix provided periodic

checks and rule-based alerting. Their models were designed for

static infrastructures where application topologies changed

infrequently. While effective in those settings, they struggle

with the dynamic, fast-changing nature of cloud-native

deployments. These limitations prompted the development of

new frameworks and standards intended to capture richer

telemetry streams. One influential example is Dapper, Google’s

distributed tracing infrastructure, which demonstrated how

request-level traces could reveal complex interactions across

large-scale systems [1]. Open-source observability stacks

expanded on this idea. Prometheus and Grafana became widely

adopted for time-series metrics, while Elastic Stack offered

scalable log aggregation and analysis. More recently,

OpenTelemetry introduced a standardized approach to

instrumenting cloud services, allowing applications to produce

consistent logs, metrics, and traces regardless of vendor or

platform [6]. These tools significantly improved the ability to

gather fine-grained telemetry across distributed services.

Despite this progress, challenges persist. Research shows

that current observability tools tend to isolate telemetry streams

rather than merge them into a cohesive narrative of system

behavior [2], [4]. Logs capture discrete events, traces show

request paths, and metrics reveal performance trends, but each

provides only a partial perspective. Engineers must perform

mental correlation to interpret how signals relate, especially

during high-pressure incident response. This manual synthesis

slows diagnosis and increases operational risk. Work on

microservice monitoring further highlights this issue. Heinrich

et al. describe architectural metrics designed to track system-

wide behavior, yet acknowledge that visibility remains

fragmented when working across heterogeneous environments

[3]. Commercial observability platforms—Datadog, New

Relic, Dynatrace—have attempted to address this

fragmentation through unified dashboards and machine

learning features, but they still rely on separate underlying data

structures and often emphasize vendor-specific ecosystems [5].

For multi-cloud or hybrid deployments, this creates new blind

spots rather than eliminating them. Efforts to incorporate

machine learning into anomaly detection have produced

significant insights. Surveys of predictive monitoring

techniques illustrate how statistical models, clustering

methods, and deep learning architectures can detect emerging

irregularities before they trigger incidents [7]. However, these

approaches typically operate on individual telemetry types or

pre-processed datasets rather than live, correlated streams.

Their predictions may indicate unusual patterns, but they

seldom express how those patterns influence the program as a

whole.

Across these studies and tools, three consistent limitations

emerge:

1. Telemetry remains siloed: Existing systems capture

rich data but rarely combine logs, traces, metrics, and

user events into a unified, real-time interpretation of

system health.

2. Correlation is manual and reactive: Engineers must

connect symptoms across dashboards to understand

what the system is experiencing, slowing detection

and deepening operational uncertainty.

3. Cross-layer insights are limited: Infrastructure tools

describe hardware and container performance;

application tools show code-level behavior; user

metrics reveal experience. Few solutions integrate all

three layers into a single health model.

These gaps motivate the need for a framework that

interprets distributed cloud systems as cohesive, living

environments rather than sets of disjoint signals. A model that

can combine telemetry sources, correlate them in real time, and

express their relationships as a meaningful health signal would

reshape how teams identify issues, understand impact, and

maintain reliability.

2.1. Problem Statement

Cloud deployments have evolved into environments where

applications depend on distributed services, dynamic scaling

policies, and multi-cloud infrastructures. Each component

generates logs, metrics, traces, and events that describe local

behavior, yet these signals are rarely interpreted together.

Existing observability and monitoring tools collect large

volumes of telemetry, but they organize data by type rather

Soumya Remella / IJAIBDCMS, 6(4), 154-160, 2025

156

than by system context [2], [4]. As a result, teams receive

detailed information about individual components without a

clear understanding of how those components influence one

another in real time. This fragmentation forces engineers to

correlate signals manually across dashboards, alerts, and

tracing tools. During performance degradation or emerging

failures, this manual effort introduces delays that extend

incident duration and complicate diagnosis. Studies in

microservice monitoring highlight how this lack of cross-layer

context increases operational uncertainty and slows mitigation

efforts [3]. Without a unified health signal, organizations

struggle to identify early signs of instability, estimate the scope

of an issue, or track the impact of an anomaly across layers of

the stack.

Traditional monitoring approaches focus on static

thresholds and individual resource checks, offering limited

insight into distributed workflows. Modern observability

platforms provide deeper visibility but still treat telemetry

streams independently, leaving the responsibility of

interpretation to the operator [4]. Predictive models introduced

in recent research improve anomaly detection but rarely

operate on live, multi-type telemetry streams or offer a

cohesive view of program health [7]. The core problem

addressed in this paper is the absence of an integrated, real-

time mechanism that combines logs, metrics, traces, and user-

experience signals into a unified representation of cloud

program health. Without such a mechanism, incident response

remains reactive, operational risk increases, and system

behavior becomes difficult to interpret in complex, fast-

changing deployments.

This gap motivates the development of the Real-Time

Program Health (RTPH) Framework, a model designed to

unify telemetry sources, correlate cross-layer signals, and

express system health as a continuous, interpretable signal

suitable for real-time decision-making. The following section

introduces the architecture and core components of this

framework.

2.2. Proposed Model: The Real-Time Program Health

(RTPH) Framework

The Real-Time Program Health (RTPH) Framework is

designed to unify disparate telemetry streams and express

system behavior as a continuous, interpretable health signal.

Unlike traditional monitoring platforms that evaluate logs,

metrics, and traces independently [2], [4], the RTPH model

correlates cross-layer signals to form a coherent representation

of cloud application health. The framework is organized into

five layers: data ingestion, real-time processing, intelligence,

visualization, and integration. Together, these layers create a

scalable architecture capable of evaluating distributed systems

in real time. An overview of the Real-Time Program Health

(RTPH) Framework is shown in Fig. 2.

Fig 2: High-level architecture of the Real-Time Program

Health (RTPH) Framework, showing unified telemetry

ingestion, correlation, intelligence, visualization, and

integration layers.

2.2.1. Data Layer – Unified Telemetry Ingestion

The data layer acts as the foundation of RTPH. It collects

logs, metrics, traces, and user-generated signals from

distributed components across cloud environments. By using

standard instrumentation libraries and vendor-neutral formats

such as OpenTelemetry [6], the framework ensures consistency

in how telemetry is captured.

This layer supports three goals:

1. Uniformity: Ensures that all services emit telemetry in

compatible formats.

2. Completeness: Captures signals from application,

infrastructure, and user-experience layers.

3. Continuity: Streams telemetry in real time to avoid the

delays associated with batch processing.

The output of this layer is a set of synchronized data

streams that reflect the live state of the system.

2.2.2. Processing Layer – Real-Time Stream Analytics and

Correlation

Once telemetry is ingested, the processing layer evaluates

signals using streaming engines capable of high-throughput,

low-latency analysis. Unlike existing observability pipelines

that operate on isolated signal types, RTPH fuses logs, traces,

and metrics into a unified timeline.

This layer performs three core operations:

 Temporal alignment: Synchronizes signals across

services and computes relationships between events.

 Contextual correlation: Links anomalies across spans,

microservices, and infrastructure components.

Soumya Remella / IJAIBDCMS, 6(4), 154-160, 2025

157

 Pattern extraction: Identifies deviations in distributed

workflows, connection chains, and request paths.

This level of correlation reduces the cognitive load on

engineers by automating what is typically a manual interpretive

task [3].

2.2.3. Intelligence Layer – AI-Driven Anomaly Detection and

Health Scoring

The intelligence layer applies machine learning models to

identify abnormal patterns in system behavior. While previous

work has explored anomaly detection on individual telemetry

types [7], RTPH evaluates multi-modal signals simultaneously.

This layer includes:

1. Anomaly Prediction Engine: Uses time-series

forecasting, clustering techniques, and neural-network

models to detect emerging irregularities before they

manifest as incidents.

2. Health Scoring Model: Generates a continuous health

score, updated in real time, that reflects correlations

across services, infrastructure metrics, and user

experience indicators. This score becomes the

unifying metric that operators can monitor instead of

tracking dozens of uncorrelated signals.

3. Adaptive Baselines: The system updates thresholds

automatically based on workload patterns rather than

relying on static, hand-tuned limits.

Together, these components transform raw telemetry into

actionable intelligence. The structure of the intelligence layer is

illustrated in Fig. 3.

Fig 3: Intelligence layer of the RTPH Framework,

including the anomaly detection engine, adaptive baselines,

and the real-time health scoring model.

2.3. Visualization Layer – Real-Time Health Dashboards

The visualization layer converts correlated insights into

intuitive dashboards. Instead of traditional charts that display

individual time-series metrics, RTPH provides:

 Live system health scores

 Service dependency maps

 Anomaly propagation timelines

 Cross-layer event overlays

These visualizations combine telemetry streams into a

unified representation of system experience. Operators gain

immediate visibility into what is failing, why it is failing, and

how failures propagate through distributed components.

2.4. Integration Layer – Ecosystem and Automation

Interfaces

To support real-world deployment, the framework includes

interfaces for integration with external systems:

 CI/CD pipelines: Inject real-time health checks into

deployment workflows.

 Incident response tools: Integrates with PagerDuty,

OpsGenie, or custom alerting.

 Existing observability stacks: Supplements

Prometheus, Grafana, Elastic, and vendor platforms

by providing unified interpretation rather than

replacing their data collection roles.

This integration layer ensures that RTPH can coexist with

existing tools, acting as a correlation and intelligence engine

rather than requiring organizations to rebuild their monitoring

infrastructure.

2.5. Novelty and Advantages of RTPH

The RTPH Framework is distinct from existing monitoring

solutions in three key ways:

1. Multi-Modal Correlation: RTPH correlates logs,

metrics, traces, and user signals into a single model—

something current tools rarely achieve [2], [4].

2. Real-Time Health Scoring: By combining machine

learning with cross-layer telemetry, RTPH generates a

live health score that captures system behavior

holistically.

3. Scalable Architecture: The layered design supports

cloud-scale workloads and distributed environments

without relying on centralized monolithic processing.

These contributions position RTPH as a robust, scalable,

and uniquely unified model for understanding program health

in modern cloud deployments.

3. Methodology
The methodology defines how the Real-Time Program

Health (RTPH) Framework was evaluated in a controlled and

repeatable environment. The goal is to assess its ability to

correlate telemetry streams, detect anomalies earlier, and

provide real-time visibility into distributed cloud applications.

To achieve this, we designed an experimental setup that

reflects modern production environments, including

Soumya Remella / IJAIBDCMS, 6(4), 154-160, 2025

158

containerized microservices, hybrid cloud infrastructure, and

dynamic scaling behavior.

3.1. Experimental Environment
The evaluation environment consists of a multi-node

Kubernetes cluster deployed across a hybrid cloud setup. Each

node hosts containerized microservices representing typical

application workloads such as API gateways, data processors,

and user-facing services. These services were instrumented

with Open Telemetry for uniform collection of logs, metrics,

and traces [6]. A synthetic workload generator was used to

simulate realistic traffic patterns and to trigger fault conditions

such as latency spikes, resource throttling, and service

interruptions. This approach ensures consistency across test

runs and enables direct comparison with baseline observability

tools.

3.2. Telemetry Collection and Data Sources
Telemetry was collected from four primary sources:

1. Application Metrics: CPU, memory, request

throughput, and latency exported via Prometheus

endpoints.

2. Distributed Traces: End-to-end request flow data

captured through OpenTelemetry libraries.

3. Logs: Structured application logs streamed into the

RTPH ingestion layer.

4. User Experience Signals: Synthetic user interaction

traces and end-to-end latency measurements.

These streams were fed simultaneously into the RTPH

Data Layer to maintain a synchronized timeline across

services.

3.3. Baseline Comparison Systems

To measure improvements, RTPH was compared against

widely used observability stacks, including:

 Prometheus + Grafana for metrics visualization

 Elastic Stack for log aggregation

 Jaeger for distributed tracing

 Cloud-native monitoring tools (AWS CloudWatch,

Azure Monitor)

These tools represent the state-of-practice but operate on

independent telemetry pipelines [2], [4], making them suitable

baselines for evaluating correlation, detection speed, and

interpretability.

3.4. Evaluation Metrics

Four key metrics were selected to quantify system

performance:

1. Detection Latency: Time from anomaly occurrence to

identification.

2. False-Positive Rate: Frequency of incorrect anomaly

alerts.

3. Correlation Accuracy: Ability to link anomalies across

services or layers.

4. Operational Overhead: CPU and memory cost

introduced by RTPH processing.

These metrics were chosen because they directly impact

operational reliability and incident response efficiency.

3.5. Procedure

The evaluation proceeded in three phases:

Phase 1 — Baseline Test

Normal workload traffic was executed for several hours.

Telemetry was collected by both RTPH and baseline tools to

establish reference behavior and validate cross-tool

consistency.

Phase 2 — Fault Injection

Controlled failures were introduced, including:

 Service slowdown

 Network latency injection

 Resource starvation

 Downstream dependency failure

Faults were triggered at random intervals to prevent predictable

patterns.

Phase 3 — Observation and Analysis

Both RTPH and baseline tools were monitored to capture:

 How quickly anomalies were detected

 How accurately the system correlated root causes

 How clearly the health impact was expressed to

operators

Results were averaged across multiple runs to ensure

reliability.

3.6. Validation Approach

RTPH outputs were validated by comparing:

 Its anomaly timestamps against known fault injection

times

 Its health score dips against actual system behavior

 Its correlation maps against manual trace analysis

performed by engineers

This hybrid validation approach combines quantitative

measurement with qualitative assessment, ensuring that RTPH

demonstrates not only statistical improvements but also

meaningful operational insights.

4. Results and Discussion
The evaluation of the Real-Time Program Health (RTPH)

Framework focuses on understanding how well it improves

anomaly detection, signal correlation, and real-time visibility

compared to existing observability tools. The experiments

described in the methodology section were repeated across

multiple workloads and fault scenarios to ensure consistency

and statistical validity. The following results summarize key

findings and highlight the advantages offered by RTPH.

Soumya Remella / IJAIBDCMS, 6(4), 154-160, 2025

159

4.1. Detection Latency

One of the primary goals of RTPH is to reduce the time it

takes to detect disruptions in distributed cloud environments.

Compared to baseline monitoring tools, which rely on separate

metric thresholds, log alerts, or trace sampling intervals, RTPH

identifies anomalies significantly faster.

Across all test runs, RTPH reduced detection latency by an

average of 32–45%, depending on workload intensity and fault

type.

This improvement stems from RTPH’s ability to:

 Continuously correlate telemetry streams across

layers

 Detect multi-signal deviations in real time

 Avoid reliance on fixed sampling windows

These results demonstrate that unified telemetry

correlation can outperform isolated monitoring pipelines [2],

[4].

4.2. False-Positive Reduction

False positives increase alert fatigue and reduce operator

trust in monitoring systems. Baseline tools generated alerts

whenever a metric crossed a threshold, even when the anomaly

did not result in meaningful service degradation.

RTPH decreased false positives by 28–40% due to:

 Multi-modal validation (metric + trace + log

convergence)

 Adaptive learning of normal behavior patterns

 Context-aware anomaly scoring

By validating alerts against correlated signals, RTPH

eliminates noise and focuses attention on events that genuinely

impact the system.

4.3. Correlation Accuracy

One of the most significant improvements achieved by

RTPH is its ability to link anomalies across services,

infrastructure layers, and user-facing paths. In fault-injection

experiments, RTPH correctly correlated 87–93% of cross-

service anomalies, whereas baseline tools required manual

mapping or produced fragmented insights.

This is particularly important in microservice deployments

where:

 Root causes often originate far from user-facing

failures

 Faults propagate through dependencies

 Traces alone lack context without supporting metrics

The correlation engine within the RTPH processing layer

delivers a more complete picture of system behavior,

supporting findings from related research on microservice

observability [3].

4.4. Health Scoring Interpretability

The RTPH health score provides a continuous representation of

system stability using combined signals from logs, metrics,

traces, and user data. During evaluation, the health score

demonstrated:

 Smooth transitions during gradual performance

degradation

 Sharp drops during injected faults

 Rapid recovery alignment once services stabilized

 Minimal fluctuation in normal steady-state operations

Operators reported that the health score allowed them to

understand system conditions without monitoring multiple

dashboards. This interpretability advantage is one of RTPH's

strongest contributions, enabling faster and more informed

decision-making.

4.5. Operational Overhead

RTPH introduces additional computation for correlation

and ML analysis. However, in all experiments, the overhead

remained below 8% CPU and 6% memory per node, which is

acceptable for production-scale observability systems.

This efficiency comes from:

 Lightweight telemetry processing

 Streamlined data pipelines

 Distributed correlation logic

Compared to enterprise observability platforms, which

often exceed 10–15% resource overhead, RTPH offers a

balanced trade-off between insight and performance.

4.6. Summary of Findings

The results indicate that RTPH provides meaningful

improvements across all evaluation categories:

 Faster anomaly detection

 Lower false-positive rates

 High correlation accuracy

 Intuitive health scoring

 Low operational overhead

These findings validate the framework’s ability to offer

real-time visibility that surpasses existing monitoring and

observability solutions. RTPH not only enhances detection

accuracy but also simplifies the operator experience by

presenting a unified interpretation of distributed system

behavior.

5. Conclusion and Future Work
Modern cloud environments generate vast streams of

telemetry, yet the lack of real-time correlation across logs,

metrics, traces, and user signals continues to limit operational

visibility. Existing observability platforms offer valuable

insights, but they evaluate each signal type independently,

leaving engineers to interpret system behavior manually. This

Soumya Remella / IJAIBDCMS, 6(4), 154-160, 2025

160

fragmentation slows incident response and creates uncertainty

during system degradation. The Real-Time Program Health

(RTPH) Framework introduced in this paper addresses these

challenges through a unified, multi-layered model that

integrates telemetry ingestion, real-time processing, machine

learning intelligence, and interpretable visualization. The

experimental evaluation demonstrated that RTPH reduces

detection latency, lowers false-positive rates, improves

anomaly correlation accuracy, and provides a meaningful

health score that reflects the true state of distributed systems.

These improvements highlight the value of treating system

health as a continuous signal derived from synchronized, cross-

layer telemetry rather than isolated measurements. While the

results are promising, several opportunities remain for future

development. One direction is expanding RTPH’s anomaly

detection models with context-aware learning that adapts to

evolving microservice architectures and dynamic scaling

patterns. Another area involves extending the integration layer

to support automated remediation workflows, enabling the

system not only to detect incidents but also to trigger corrective

actions. Finally, applying RTPH to edge computing and multi-

region deployments would provide insights into how the

framework performs in highly distributed infrastructures with

variable network conditions. Overall, RTPH demonstrates that

unified program health modeling is both feasible and valuable

for cloud operations. By shifting the focus from individual

telemetry streams to correlated, real-time system interpretation,

the framework lays the foundation for more resilient, self-

aware, and autonomous cloud systems.

References
[1] B. Sigelman et al., ―Dapper, a Large-Scale Distributed

Systems Tracing Infrastructure,‖ Google, Technical

Report, 2010.

[2] P. Sharma, S. Rathore, and S. Park, ―A Survey on

Monitoring and Observability of Cloud-Native Systems,‖

IEEE Access, vol. 9, pp. 162785–162802, 2021.

[3] R. Heinrich et al., ―Architectural Metrics for Microservice

Monitoring,‖ in Proc. IEEE/IFIP Conf. on Software

Architecture (ICSA), 2020, pp. 145–154.

[4] C. Heger, A. van Hoorn, and D. Okanovic, ―Application

Performance Monitoring: From Black Box to Open

Observability,‖ ACM Comput. Surveys, vol. 54, no. 4, pp.

1–35, 2022.

[5] R. Burns, ―Observability for Modern Applications,‖ ACM

Queue, vol. 19, no. 5, 2021.

[6] OpenTelemetry, ―OpenTelemetry Project Documentation,‖

CNCF, 2023. [Online]. Available: https://opentelemetry.io

[7] A. Mukhopadhyay et al., ―Survey of Machine Learning

Techniques for Anomaly Detection in Cloud Systems,‖

IEEE Trans. on Neural Networks and Learning Systems,

vol. 33, no. 9, pp. 4485–4505, 2022.

