
International Journal of AI, BigData, Computational and Management Studies

Noble Scholar Research Group | Volume 6, Issue 4, PP 170-175, 2025

ISSN: 3050-9416 | https://doi.org/10.63282/3050-9416.IJAIBDCMS-V6I4P119

Original Article

Unified Event-Driven Architecture across AWS and

Azure: Leveraging Kafka + Confluent for Real-Time

Enterprise Intelligence

Girish Rameshbabu
Independent Researcher, USA.

Received On: 01/10/2025 Revised On: 02/11/2025 Accepted On: 15/11/2025 Published On: 25/11/2025

Abstract: Modern enterprise intelligence demands a real-time, unified data plane that abstracts cloud-specific

messaging and security complexities. This paper details the implementation of a Unified Event-Driven Architecture

(UEDA) using Apache Kafka and Confluent Cluster Linking to bridge AWS and Azure environments. We analyze how

this architecture overcomes multi-cloud fragmentation by enforcing centralized data contracts via the Schema

Registry, aligning security policies through centralized role-based authorization across components using RBAC

(environment-scoped), and achieving high availability through offset-preserving cluster replication. Furthermore, we

provide prescriptive guidance on cost optimization, focusing on strategies to minimize cloud egress charges, and

analyze the critical tuning levers required to meet stringent Recovery Time Objective (RTO) and Recovery Point

Objective (RPO) targets. The UEDA establishes a resilient, scalable foundation for complex cross-cloud streaming

applications and future integration with Edge computing and AI/ML initiatives.

Keywords: Event-Driven Architecture, Multi-Cloud, Kafka, Confluent, Cluster Linking, Stream Governance, Data

Contracts, Disaster Recovery.

1. Introduction and Motivation
1.1. Background: The Evolution of Enterprise Data

Transport

Modern enterprises rely on real-time data to drive

personalization, anomaly detection, and operational

efficiency. Historically, data integration relied on Batch-ETL

(Extract, Transform, Load) processes. While suitable for

high-volume, non-time-sensitive tasks, Batch-ETL suffers

from inherent limitations including high latency (often hours

or days), resource intensiveness during scheduled windows,

and rigidity [1].

Cloud adoption increased the use of point-to-point

integrations and cloud-native messaging services (e.g.,

Kinesis, Event Hubs). However, in multi-cloud

environments, this approach quickly fragments the data

landscape. Every connection requires unique security,

schema translation, and monitoring configuration, leading to

technical debt and brittle systems [2].

1.2. Problem Statement: Multi-Cloud Fragmentation and

Silos

The pursuit of multi-cloud agility driven by needs for vendor

diversity, specialized services, and regulatory compliance

inadvertently creates significant operational complexity. This

phenomenon, termed multi-cloud fragmentation, manifests

as:

 Duplicated Logic and Schema Drift: Integration

logic must be rewritten or maintained separately,

leading to inconsistent data transformation and

"schema drift" [2].

 Fragmented Governance and Security: Enforcing

uniform security policies (e.g., RBAC, encryption)

across heterogeneous identity and networking

stacks is challenging, creating blind spots.

 Cross-Cloud Backhaul Cost: Uncontrolled data

movement results in high network utilization and

significant egress fees.

This fragmentation prevents a unified, real-time view of the

business, as data remains locked in platform-specific silos.

Fig 1: Conceptual Problem Landscape: Application Silos

Across AWS and Azure [4]

Girish Rameshbabu / IJAIBDCMS, 6(4), 170-175, 2025

171

1.3. The Imperative for a Unified Event-Driven

Architecture (UEDA)

A UEDA provides a single, logical data transport layer

spanning multiple cloud environments, transforming data

into a managed, globally distributed asset.

The defining properties of a UEDA are:

 Consistent Data Contracts: Guaranteed message

structure and validity across all cloud consumers

and producers.

 Policy Enforcement: Centralized control over

security, access, and data sovereignty rules.

 Global Event Distribution: Seamless, managed

replication of events between all connected

environments.

Table 1: Maps These Requirements Against Traditional and UEDA Approaches.

UEDA Requirement Batch-ETL Point-to-Point Integration UEDA (Kafka + Confluent)

Real-Time Transport No (High Latency) Yes (Unreliable/Low

Scalability)

Yes (High Throughput, Low

Latency)

Data Contracts/Schema

Governance

No (Manual

Validation)

Limited (Service-Specific) Yes (Centralized Schema Registry)

Consistent Security/RBAC No (System-Specific) No (Fragmented Policies) Yes (Centralized Role-Based

Authorization)

Disaster Recovery/HA Low (Complex

Recovery)

Low (No Global

Continuity)

High (Offset-Preserving

Replication)

Decoupling/Elasticity Low (Resource

Spikes)

Moderate (Fragile at Scale) High (Asynchronous, Scalable Log)

1.4. Role of Kafka and Confluent in Cross-Cloud

Interoperability

Apache Kafka serves as the foundational, durable, append-

only, and partitioned event log [3].

Confluent elevates Kafka to a UEDA-enabling platform:

● Managed Replication (Cluster Linking): Operates at

the broker level, using the native Kafka replication

protocol. It provides offset-preserving replication,

ensuring events are mirrored to the same partition

and offset on the destination cluster without offset

translation.

● Centralized Governance: Schema Registry and

ksqlDB enable unified data contracts and in-flight

processing. Broker-side schema ID validation at the

topic enforces that only messages with valid schema

IDs enter the log.

1.5. Scope of Paper

This paper details the implementation of a UEDA using

Kafka and Confluent across AWS and Azure, specifically

analyzing and providing solutions for four core multi-cloud

challenges: data sovereignty, cost optimization, latency

management, and resilience/failover.

1.6. Core Architecture: Kafka + Confluent across AWS and

Azure

The UEDA relies on the strategic deployment of two

distinct, highly available Kafka clusters one primary in AWS

and one secondary in Azure interconnected by a secure,

managed replication service.

2. High-Level Cross-Cloud Topology
The UEDA treats clouds as geographically distributed

regions within a single, logical event mesh.

Girish Rameshbabu / IJAIBDCMS, 6(4), 170-175, 2025

172

Fig 2: Reference Architecture with Data and Control Flows [5]

2.1. Key Components

The technical implementation hinges on key Kafka

components extended by Confluent's platform features:

 Kafka Cluster/Brokers: Form the core compute and

storage for the event log. In a multi-cloud context,

their configuration must be optimized for consistent

cross-cloud network latency. Kafka cluster here is

confluent managed component, which is basically

kafka brokers.

 Confluent Platform/Cloud Services: These services

automate the operational burden:

 Cluster Linking: The dedicated mechanism for

replicating topics. A link object is created on the

destination cluster and pulls data from the source

cluster brokers using the native replication protocol.

 Mirror Topics: These are special read-only copies of

the source topic, residing on the destination cluster.

Crucially, they preserve the original topic's

partitioning and offset byte-for-byte, ensuring data

consistency and simplifying consumer failover.

 Schema Registry: Enforces data contracts (e.g.,

Avro, Protobuf) across the two clouds, preventing

consumers in one cloud from encountering

incompatible data formats from a producer in the

other.

 Connectors: Managed Confluent connectors (source

and sink) integrate the UEDA with cloud-specific

endpoints, such as capturing data from Azure Event

Hubs or delivering data to AWS S3 or Azure Data

Lake Storage (ADLS).

2.2. Deployment Models and Link Initiation

Table 2: The UEDA Supports Flexibility in Deployment

Model Source Cluster Destination Cluster Interconnect Strategy Link

Initiation

Cloud ↔ Cloud

(Public)

Confluent Cloud

(AWS)

Confluent Cloud

(Azure)

Public endpoints (Internet) Destination

cluster

Cloud ↔ Cloud

(Private)

Confluent Cloud

(AWS)

Confluent Cloud

(Azure)

Private endpoints (AWS PrivateLink /

Azure Private Link)

Destination

cluster

Hybrid Confluent Platform

(On-Prem/EC2)

Confluent Cloud

(AWS/Azure)

VPN/Direct Connect/ExpressRoute Destination

cluster

Self-Managed Confluent Platform

(AWS EC2)

Confluent Platform

(Azure VM)

VPC/VNet Peering / VPN tunnel Destination

cluster

Note on Link Initiation: Cluster links are destination-

initiated. The destination cluster establishes the connection to

the source cluster, simplifying firewall configuration (allow

outbound from destination brokers to source brokers).

2.3. Consumer Failover Path and Offset Synchronization

A core UEDA capability is seamless consumer failover:

 Replication: Producers write to the active cluster;

Cluster Linking mirrors to a read-only mirror topic

on the DR cluster.

 Offset Synchronization: Consumer group offsets

(from __consumer_offsets) are synchronized to the

destination, controlled by

consumer.offset.sync.enable and

Girish Rameshbabu / IJAIBDCMS, 6(4), 170-175, 2025

173

consumer.offset.sync.ms (default 30s; can be

reduced to 1s to tighten RTO/RPO).

 Failover & Promotion: On failure, consumers are

redirected to the DR cluster, and the mirror topic is

promoted to a writable topic.

3. Technical Interoperability and Data

Governance
3.1. Cross-Cloud Networking: Connectivity and Constraints

Prefer private paths (e.g., AWS PrivateLink, Azure Private

Link) to minimize latency, cost, and exposure.

 Link Initiation Constraint: Connections are

destination-initiated, allowing for controlled

outbound connectivity from destination brokers.

3.2. Data Contracts and Schema Enforcement

Interoperability is achieved via Confluent Schema

Registry, mandating efficient serialization

(Avro/Protobuf/JSON-SR).

 Schema Evolution: The Schema Registry enforces

compatibility per subject, ensuring evolving

producers remain readable by consumers across

clouds.

 Data Contracts & Rules: Broker-side schema ID

validation complements client-side rules (data

quality, transform) to prevent invalid data from

entering the topic log.

Fig 3: Unified Governance Stack and Policy Evaluation Points

3.3. Security Alignment

Achieve consistent security with unified identity and

authorization.

● Centralized RBAC: Confluent RBAC provides

environment-scoped, role-based authorization for

Kafka resources (topics, consumer groups) and

governance resources (Schema Registry subjects).

RBAC is generally allow-only, while Kafka ACLs

can be used for explicit restrictions (DENY).

4. Data Sovereignty and Compliance
4.1. Regulatory Drivers

Key regulatory pressures include Data

Residency/Localization, Lawful Intercept (auditable

systems), and stringent Industry Mandates (HIPAA, DORA).

4.2. Routing Strategy: Selective Topic Replication

Compliance is enforced using selective topic replication via

Cluster Linking filters:

 Explicit Filtering: Configure link

INCLUDE/EXCLUDE filters for topic replication.

 Authorization & ACLs: Do not grant RBAC roles

on restricted topics to the link principal; optionally

add Kafka ACLs with permission=DENY to hard-

block replication attempts.

Table 3: Sovereignty Constraints → Technical Control

Sovereignty Constraint Data Flow Requirement Technical Control

Layer

Control Mechanism

Data Residency (EU

only)

Prevent replication outside EU Cluster Link / Security

Plane

EXCLUDE filters; no RBAC grant;

optional ACL DENY

Lawful Intercept

(Auditability)

Retain full, append-only log

within jurisdiction

Kafka Brokers Dedicated audit topics with restricted

access

Data Minimization Allow global flow, but mask

PII before replication

Stream Processing/Data

Contracts

ksqlDB/Streams transforms; Data

Contracts TRANSFORM rules

Access/Auditability Consistent access controls

across clouds

Security Plane Environment-scoped RBAC; audit

logs

Girish Rameshbabu / IJAIBDCMS, 6(4), 170-175, 2025

174

4.3. In-Transit Compliance

For data that must cross the boundary, apply

masking/hashing locally (source cloud) via stream

processing or Data Contract transform rules, and replicate a

sanitized stream globally.

5. Resilience and Continuity (High Availability & Disaster Recovery)
5.1. Multi-Cloud Failover Models

Table 4: Comparison of Active–Passive Disaster Recovery and Active Active High Availability Models

Metric Active–Passive (DR Model) Active–Active (HA Model)

Operational

Preconditions

Producers/consumers on primary; unidirectional

replication

Producers in both regions; bidirectional

replication

RPO Target Low (seconds) Near-Zero

RTO Target Minutes (manual cutover) Seconds (automated redirection)

Data Consistency Simpler (single source of truth) More complex (dual writes/conflicts)

5.2. The Role of Cluster Linking

Cluster Linking provides offset-preserving replication,

which maintains identical partition structure and offsets on

mirror topics.

Note on Duplicates: Replication is asynchronous.

Consumers must be idempotent to handle potential re-reads

during a cutover.

5.3. RTO/RPO Targets and Tuning Levers

 RPO: Determined by mirror lag. Use fast, private

interconnects to keep lag in single-digit seconds.

 RTO: Driven by offset freshness at DR. Reduce

consumer.offset.sync.ms from the 30s default (as

low as 1s) to minimize the consumer restart

window.

6. Cost and Performance Optimization
6.1. Cost Drivers

Total cost is driven by managed replication metering

and network charges.

 Managed Replication Metering: Billed by per-link

hourly charges and per-GB replication throughput

(ClusterLinkingRead/Write).

 Cloud Data Transfer/Egress Charges: Significant

cost driver. Strategies must focus on minimizing

cross-cloud data volume.

Table 5: Cost Model Variables and Sensitivity Knobs

Variable Description Sensitivity Knobs

Topics/Partitions Count & throughput/storage Cluster sizing, partition count

Message Size Avg/peak bytes Compression, serialization format

Compression Type/ratio CompressionType/ratio

Mirroring Selection Number of topics replicated INCLUDE/EXCLUDE filters

Egress Volume Total replicated data Filtering/aggregation at source; compression

6.2. Latency Management and Partition Design

 Lag Monitoring: Track mirror lag and link

throughput using the Metrics API.

 Partitioning and Locality: Partition count dictates

parallelism. Cluster Linking preserves partitioning

and offsets, maintaining ordering across the

boundary.

 Message Batching: Producer batching and

compression improve throughput and reduce

replication overhead.

7. Conclusion and Future Outlook
7.1. Summary of UEDA Benefits and Strategic Value

Implementing a UEDA using Kafka and Confluent Cluster

Linking across AWS and Azure transforms multi-cloud

operations from fragmented silos into a cohesive data mesh:

 Unified Data Contracts and Policy Enforcement:

Consistent data quality and structure via Schema

Registry.

 Repeatable Cross-Cloud Patterns: Codified

deployment of secure, reliable links.

 Simplified Disaster Recovery (DR): Offset-

preserving replication simplifies recovery.

7.2. Operational Challenges and Best Practices

 Consumer Group Hygiene: Design consumers for

idempotency to handle re-reads.

 Environment Parity & CI/CD: Maintain strict parity

(Kafka versions, networking, Schema Registry

subjects) across AWS/Azure.

 Proactive SLOs: Define and monitor SLOs for

mirror lag and consumer lag.

7.3. Future Integration: Edge and AI/ML

 Edge/Branch Event Capture: Extend with

lightweight Kafka at the edge and selective

upstream replication.

 Guarded Cross-Cloud Movement: Use governance

features (filtering, masking) to ensure model

training data crosses boundaries only under

compliance rules.

Girish Rameshbabu / IJAIBDCMS, 6(4), 170-175, 2025

175

References
1. P. K. Gupta, et al., "Batch vs. Real-Time Processing: A

Comparative Study," IEEE Transactions on Cloud

Computing, vol. 10, no. 5, pp. 450-460, 2023.

2. A. B. Chen, "Managing Technical Debt in Hybrid and

Multi-Cloud Environments," Journal of Enterprise

Information Management, vol. 35, no. 1, pp. 20-35,

2022.

3. J. A. Smith, "The Distributed Commit Log: A

Foundation for Stream Processing," ACM Symposium

on Distributed Systems, 2021.

4. Figure1 source: Gemini generated diagram

5. Figure2 reference diagram :

https://github.com/confluentinc/demo-cross-cloud-

replication/blob/master/assets/1-HLD.png

Documentation for reference:[1]

https://github.com/confluentinc/demo-cross-cloud-replication/blob/master/assets/1-HLD.png
https://github.com/confluentinc/demo-cross-cloud-replication/blob/master/assets/1-HLD.png

