International Journal of Al, BigData, Computational and Management Studies
Noble Scholar Research Group | Volume 6, Issue 4, PP 170-175, 2025
ISSN: 3050-9416 | https://doi.org/10.63282/3050-9416.1JAIBDCMS-V614P119

Original Article

Unified Event-Driven Architecture across AWS and
Azure: Leveraging Kafka + Confluent for Real-Time

Enterprise Intelligence

Girish Rameshbabu
Independent Researcher, USA.
Received On: 01/10/2025 Revised On: 02/11/2025 Accepted On: 15/11/2025 Published On: 25/11/2025
Abstract: Modern enterprise intelligence demands a real-time, unified data plane that abstracts cloud-specific
messaging and security complexities. This paper details the implementation of a Unified Event-Driven Architecture
(UEDA) using Apache Kafka and Confluent Cluster Linking to bridge AWS and Azure environments. We analyze how
this architecture overcomes multi-cloud fragmentation by enforcing centralized data contracts via the Schema
Registry, aligning security policies through centralized role-based authorization across components using RBAC
(environment-scoped), and achieving high availability through offset-preserving cluster replication. Furthermore, we
provide prescriptive guidance on cost optimization, focusing on strategies to minimize cloud egress charges, and
analyze the critical tuning levers required to meet stringent Recovery Time Objective (RTO) and Recovery Point
Objective (RPO) targets. The UEDA establishes a resilient, scalable foundation for complex cross-cloud streaming
applications and future integration with Edge computing and Al/ML initiatives.

Keywords: Event-Driven Architecture, Multi-Cloud, Kafka, Confluent, Cluster Linking, Stream Governance, Data

Contracts, Disaster Recovery.

1. Introduction and Motivation
1.1. Background: The Evolution of Enterprise Data
Transport

Modern enterprises rely on real-time data to drive
personalization, anomaly detection, and operational
efficiency. Historically, data integration relied on Batch-ETL
(Extract, Transform, Load) processes. While suitable for
high-volume, non-time-sensitive tasks, Batch-ETL suffers
from inherent limitations including high latency (often hours
or days), resource intensiveness during scheduled windows,
and rigidity [1].

Cloud adoption increased the use of point-to-point
integrations and cloud-native messaging services (e.g.,
Kinesis, Event Hubs). However, in multi-cloud
environments, this approach quickly fragments the data
landscape. Every connection requires unique security,
schema translation, and monitoring configuration, leading to
technical debt and brittle systems [2].

1.2. Problem Statement: Multi-Cloud Fragmentation and
Silos
The pursuit of multi-cloud agility driven by needs for vendor
diversity, specialized services, and regulatory compliance
inadvertently creates significant operational complexity. This
phenomenon, termed multi-cloud fragmentation, manifests
as:
e Duplicated Logic and Schema Drift: Integration
logic must be rewritten or maintained separately,

leading to inconsistent data transformation and
"schema drift" [2].

e Fragmented Governance and Security: Enforcing
uniform security policies (e.g., RBAC, encryption)
across heterogeneous identity and networking
stacks is challenging, creating blind spots.

e Cross-Cloud Backhaul Cost: Uncontrolled data
movement results in high network utilization and
significant egress fees.

This fragmentation prevents a unified, real-time view of the
business, as data remains locked in platform-specific silos.

AWS Environment Azure Environment

Producer Prosume
Service A / Service C
= AWS Kinesis/MSK\\ .| Azure Event Hubs
*| (Messaging Queue) x (Messaging Queue)
N\ o< .

Brittle P2P Irm

& Data| Silos

v

Prosurcer
Service B

Fig 1: Conceptual Problem Landscape: Application Silos
Across AWS and Azure [4]

Girish Rameshbabu / IJAIBDCMS, 6(4), 170-175, 2025

1.3. The Imperative for a Unified Event-Driven
Architecture (UEDA)

A UEDA provides a single, logical data transport layer
spanning multiple cloud environments, transforming data

into a managed, globally distributed asset.

The defining properties of a UEDA are:

Consistent Data Contracts: Guaranteed message
structure and validity across all cloud consumers
and producers.

Policy Enforcement: Centralized control
security, access, and data sovereignty rules.
Global Event Distribution: Seamless,
replication of events between all
environments.

over

managed
connected

Table 1: Maps These Requirements Against Traditional and UEDA Approaches.

UEDA Requirement Batch-ETL

Point-to-Point Integration

UEDA (Kafka + Confluent)

Real-Time Transport No (High Latency)

Yes (Unreliable/Low

Yes (High Throughput, Low

Scalability) Latency)

Data Contracts/Schema
Governance

No (Manual
Validation)

Limited (Service-Specific)

Yes (Centralized Schema Registry)

Consistent Security/RBAC No (System-Specific)

No (Fragmented Policies)

Yes (Centralized Role-Based
Authorization)

Disaster Recovery/HA Low (Complex

Low (No Global High (Offset-Preserving

Recovery) Continuity) Replication)
Decoupling/Elasticity Low (Resource Moderate (Fragile at Scale) | High (Asynchronous, Scalable Log)
Spikes)

1.4. Role of Kafka and Confluent
Interoperability
Apache Kafka serves as the foundational, durable, append-
only, and partitioned event log [3].

in Cross-Cloud

Confluent elevates Kafka to a UEDA-enabling platform:

e Managed Replication (Cluster Linking): Operates at

the broker level, using the native Kafka replication
protocol. It provides offset-preserving replication,
ensuring events are mirrored to the same partition
and offset on the destination cluster without offset
translation.
Centralized Governance: Schema Registry and
ksqlDB enable unified data contracts and in-flight
processing. Broker-side schema ID validation at the
topic enforces that only messages with valid schema
IDs enter the log.

171

1.5. Scope of Paper

This paper details the implementation of a UEDA using
Kafka and Confluent across AWS and Azure, specifically
analyzing and providing solutions for four core multi-cloud
challenges: data sovereignty, cost optimization, latency
management, and resilience/failover.

1.6. Core Architecture: Kafka + Confluent across AWS and
Azure

The UEDA relies on the strategic deployment of two
distinct, highly available Kafka clusters one primary in AWS
and one secondary in Azure interconnected by a secure,
managed replication service.

2. High-Level Cross-Cloud Topology
The UEDA treats clouds as geographically distributed
regions within a single, logical event mesh.

Girish Rameshbabu / IJAIBDCMS, 6(4), 170-175, 2025

A pzure

> confluent managed Virtual Network

E -
Confluent Managed VPC
oo
[=]=T=]
ooo |
Schema Registy

Schema Linking

WS Kafka Cluster

Schema Registy

Azure Kafka Cluster

Cluster Linking

AWS
PrivateLink

Applications

/(a)\

Private Link
Seryice

4> Virtual Netwark

Applications

Fig 2: Reference Architecture with Data and Control Flows [5]

2.1. Key Components

The technical

implementation hinges on key Kafka

components extended by Confluent's platform features:

Kafka Cluster/Brokers: Form the core compute and
storage for the event log. In a multi-cloud context,
their configuration must be optimized for consistent
cross-cloud network latency. Kafka cluster here is
confluent managed component, which is basically
kafka brokers.

Confluent Platform/Cloud Services: These services
automate the operational burden:

Cluster Linking: The dedicated mechanism for
replicating topics. A link object is created on the
destination cluster and pulls data from the source
cluster brokers using the native replication protocol.

2.2. Deployment Models and Link Initiation
Table 2: The UEDA Supports Flexibility in Deployment

Mirror Topics: These are special read-only copies of
the source topic, residing on the destination cluster.
Crucially, they preserve the original topic's
partitioning and offset byte-for-byte, ensuring data
consistency and simplifying consumer failover.
Schema Registry: Enforces data contracts (e.g.,
Avro, Protobuf) across the two clouds, preventing
consumers in one cloud from encountering
incompatible data formats from a producer in the
other.

Connectors: Managed Confluent connectors (source
and sink) integrate the UEDA with cloud-specific
endpoints, such as capturing data from Azure Event
Hubs or delivering data to AWS S3 or Azure Data
Lake Storage (ADLS).

Model Source Cluster Destination Cluster Interconnect Strategy Link
Initiation
Cloud < Cloud Confluent Cloud Confluent Cloud Public endpoints (Internet) Destination
(Public) (AWS) (Azure) cluster
Cloud < Cloud Confluent Cloud Confluent Cloud Private endpoints (AWS PrivateLink / Destination
(Private) (AWS) (Azure) Azure Private Link) cluster
Hybrid Confluent Platform Confluent Cloud VPN/Direct Connect/ExpressRoute Destination
(On-Prem/EC2) (AWS/Azure) cluster
Self-Managed Confluent Platform Confluent Platform VPC/VNet Peering / VPN tunnel Destination
(AWS EC2) (Azure VM) cluster

Note on Link Initiation: Cluster links are destination-
initiated. The destination cluster establishes the connection to
the source cluster, simplifying firewall configuration (allow
outbound from destination brokers to source brokers).

2.3. Consumer Failover Path and Offset Synchronization
A core UEDA capability is seamless consumer failover:

172

Replication: Producers write to the active cluster;
Cluster Linking mirrors to a read-only mirror topic
on the DR cluster.

Offset Synchronization: Consumer group offsets
(from __consumer_offsets) are synchronized to the
destination, controlled by
consumer.offset.sync.enable and

Girish Rameshbabu / IJAIBDCMS, 6(4), 170-175, 2025

consumer.offset.sync.ms (default 30s; can be
reduced to 1s to tighten RTO/RPO).

e Failover & Promotion: On failure, consumers are
redirected to the DR cluster, and the mirror topic is
promoted to a writable topic.

3. Technical and Data

Governance
3.1. Cross-Cloud Networking: Connectivity and Constraints
Prefer private paths (e.g., AWS PrivateLink, Azure Private
Link) to minimize latency, cost, and exposure.
e Link Initiation Constraint: Connections are
destination-initiated, allowing for controlled
outbound connectivity from destination brokers.

Interoperability

3 Cluster A
A
ws | D

Confluent
Cloud

Cluster Link

Cluster Link

3.2. Data Contracts and Schema Enforcement
Interoperability is achieved via Confluent Schema
Registry, mandating efficient serialization
(Avro/Protobuf/JSON-SR).

e Schema Evolution: The Schema Registry enforces
compatibility per subject, ensuring evolving
producers remain readable by consumers across
clouds.

e Data Contracts & Rules: Broker-side schema ID
validation complements client-side rules (data
quality, transform) to prevent invalid data from
entering the topic log.

Cluster B
VLN

& -
®

Confluent
Cloud

Cluster Link

Source Cluster

2
®

Confluent
Platform

Fig 3: Unified Governance Stack and Policy Evaluation Points

3.3. Security Alignment

Achieve consistent security with unified

authorization.

e Centralized RBAC: Confluent RBAC provides

environment-scoped, role-based authorization for
Kafka resources (topics, consumer groups) and
governance resources (Schema Registry subjects).
RBAC is generally allow-only, while Kafka ACLs
can be used for explicit restrictions (DENY).

identity and

4. Data Sovereignty and Compliance
4.1. Regulatory Drivers

Key regulatory pressures include Data
Residency/Localization, Lawful Intercept (auditable
systems), and stringent Industry Mandates (HIPAA, DORA).

4.2. Routing Strategy: Selective Topic Replication
Compliance is enforced using selective topic replication via
Cluster Linking filters:

o Explicit Filtering: Configure link
INCLUDE/EXCLUDE filters for topic replication.

e Authorization & ACLs: Do not grant RBAC roles
on restricted topics to the link principal; optionally
add Kafka ACLs with permission=DENY to hard-
block replication attempts.

Table 3: Sovereignty Constraints — Technical Control

Sovereignty Constraint Data Flow Requirement

Technical Control

Control Mechanism
Layer

Data Residency (EU
only)

Prevent replication outside EU

Cluster Link / Security

EXCLUDE filters; no RBAC grant;

Plane optional ACL DENY

Lawful Intercept
(Auditability)

Retain full, append-only log
within jurisdiction

Kafka Brokers Dedicated audit topics with restricted

access

Data Minimization Allow global flow, but mask

P11 before replication

Stream Processing/Data

ksqlDB/Streams transforms; Data

Contracts Contracts TRANSFORM rules

Consistent access controls
across clouds

Access/Auditability

Security Plane Environment-scoped RBAC; audit

logs

Girish Rameshbabu / IJAIBDCMS, 6(4), 170-175, 2025

4.3. In-Transit Compliance
For data that must cross
masking/hashing locally (source

the boundary,
cloud) via

apply
stream

processing or Data Contract transform rules, and replicate a

sanitized stream globally.

5. Resilience and Continuity (High Availability & Disaster Recovery)

5.1. Multi-Cloud Failover Models

Table 4: Comparison of Active—Passive Disaster Recovery and Active Active High Availability Models

Metric Active—Passive (DR Model) Active-Active (HA Model)
Operational Producers/consumers on primary; unidirectional Producers in both regions; bidirectional
Preconditions replication replication
RPO Target Low (seconds) Near-Zero
RTO Target Minutes (manual cutover) Seconds (automated redirection)
Data Consistency Simpler (single source of truth) More complex (dual writes/conflicts)

5.2. The Role of Cluster Linking

Cluster Linking provides offset-preserving replication,
which maintains identical partition structure and offsets on
mirror topics.

Note on Duplicates: Replication is asynchronous.
Consumers must be idempotent to handle potential re-reads
during a cutover.

5.3. RTO/RPO Targets and Tuning Levers

RPO: Determined by mirror lag. Use fast, private
interconnects to keep lag in single-digit seconds.
RTO: Driven by offset freshness at DR. Reduce
consumer.offset.sync.ms from the 30s default (as

low as 1s) to minimize the consumer restart
window.

6. Cost and Performance Optimization
6.1. Cost Drivers

Total cost is driven by managed replication metering
and network charges.
Managed Replication Metering: Billed by per-link
hourly charges and per-GB replication throughput
(ClusterLinkingRead/Write).
Cloud Data Transfer/Egress Charges: Significant
cost driver. Strategies must focus on minimizing
cross-cloud data volume.

Table 5: Cost Model Variables and Sensitivity Knobs

Variable Description

Sensitivity Knobs

Topics/Partitions

Count & throughput/storage

Cluster sizing, partition count

Message Size Avg/peak bytes

Compression, serialization format

Compression Type/ratio

CompressionType/ratio

Mirroring Selection

Number of topics replicated

INCLUDE/EXCLUDE filters

Egress VVolume Total replicated data

Filtering/aggregation at source; compression

6.2. Latency Management and Partition Design

Lag Monitoring: Track mirror lag and
throughput using the Metrics API.
Partitioning and Locality: Partition count dictates
parallelism. Cluster Linking preserves partitioning

link

and offsets, maintaining ordering across the
boundary.

e Message Batching: Producer batching and
compression improve throughput and reduce

replication overhead.

7. Conclusion and Future Outlook

7.1. Summary of UEDA Benefits and Strategic Value
Implementing a UEDA using Kafka and Confluent Cluster
Linking across AWS and Azure transforms multi-cloud
operations from fragmented silos into a cohesive data mesh:
Unified Data Contracts and Policy Enforcement:
Consistent data quality and structure via Schema
Registry.

Repeatable Cross-Cloud Patterns:
deployment of secure, reliable links.

Codified

174

Offset-

Simplified Disaster Recovery (DR):
preserving replication simplifies recovery.

7.2. Operational Challenges and Best Practices

Consumer Group Hygiene: Design consumers for
idempotency to handle re-reads.

Environment Parity & CI/CD: Maintain strict parity
(Kafka versions, networking, Schema Registry
subjects) across AWS/Azure.

Proactive SLOs: Define and monitor SLOs for
mirror lag and consumer lag.

7.3. Future Integration: Edge and AI/ML

Edge/Branch Event Capture: Extend with
lightweight Kafka at the edge and selective
upstream replication.

Guarded Cross-Cloud Movement: Use governance
features (filtering, masking) to ensure model
training data crosses boundaries only under
compliance rules.

Girish Rameshbabu / IJAIBDCMS, 6(4), 170-175, 2025

References

1.

P. K. Gupta, et al., "Batch vs. Real-Time Processing: A
Comparative Study,” IEEE Transactions on Cloud
Computing, vol. 10, no. 5, pp. 450-460, 2023.

A. B. Chen, "Managing Technical Debt in Hybrid and
Multi-Cloud Environments,” Journal of Enterprise
Information Management, vol. 35, no. 1, pp. 20-35,
2022.

175

3.

J. A. Smith, "The Distributed Commit Log: A
Foundation for Stream Processing,” ACM Symposium
on Distributed Systems, 2021.

Figurel source: Gemini generated diagram

Figure2 reference diagram
https://github.com/confluentinc/demo-cross-cloud-
replication/blob/master/assets/1-HLD.png
Documentation for reference:[1]

https://github.com/confluentinc/demo-cross-cloud-replication/blob/master/assets/1-HLD.png
https://github.com/confluentinc/demo-cross-cloud-replication/blob/master/assets/1-HLD.png

