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Abstract 

 The rapid growth of cloud computing and the increasing demand for data-driven applications have led to significant 

concerns about data privacy and security. Homomorphic encryption (HE) offers a promising solution by enabling computations 

on encrypted data without the need for decryption. This paper explores the application of homomorphic encryption in privacy-

preserving machine learning (PPML) in cloud environments. We discuss the theoretical foundations of HE, its variants, and the 

challenges and opportunities it presents in the context of PPML. We also present a detailed algorithm for implementing HE in a 

machine learning pipeline, evaluate its performance, and discuss potential future directions. The paper aims to provide a 

comprehensive overview of the current state of HE in PPML and to highlight its potential for enhancing data privacy in cloud 

environments. 
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1. Introduction 
 In the era of big data, cloud computing has emerged as a pervasive and indispensable platform for the storage and 

processing of vast datasets. The scalability, flexibility, and cost-effectiveness of cloud environments make them particularly 

well-suited for handling the explosive growth of data in various sectors, from finance and healthcare to marketing and social 

media. As organizations and businesses increasingly rely on data to drive decision-making and innovation, the cloud provides a 

robust infrastructure that can accommodate the computational and storage demands of these data-intensive operations. Machine 

learning (ML) algorithms, which are at the heart of modern data analysis, have also found a natural home in the cloud. These 

algorithms require significant computational resources and access to large datasets to train models and generate accurate 

predictions. By leveraging the cloud, ML practitioners can scale their operations on demand, access powerful GPUs and other 

specialized hardware, and collaborate more effectively across distributed teams. 

 

 However, the centralization of data in cloud servers has introduced a new set of challenges, particularly in the realms of 

data privacy and security. The concentration of vast amounts of sensitive information in a single, accessible location makes 

cloud environments attractive targets for cyberattacks. Data breaches and unauthorized access incidents have the potential to 

expose personal, financial, and proprietary information, leading to serious legal, financial, and reputational consequences for 

the affected entities. This risk is compounded by the fact that data in the cloud is often subject to the security practices and 

policies of third-party cloud service providers, over which organizations have limited control. As a result, many organizations 

and individuals are hesitant to share their sensitive data, even when the potential benefits of cloud-based data analysis and 

machine learning are clear. This apprehension can stifle innovation and limit the effectiveness of data-driven strategies, as the 

fear of compromised data can outweigh the advantages of cloud computing. To address these concerns, cloud providers and 

data scientists are exploring a range of solutions, including advanced encryption techniques, anonymization methods, and 

regulatory compliance frameworks, to ensure that data privacy and security are maintained while still leveraging the powerful 

capabilities of the cloud. 

 

1.2. Encrypted Search Process 

 Performing encrypted searches on a database while preserving user privacy. It depicts a scenario where a user initiates a 

query from their device, ensuring that the query remains encrypted before being sent to the database. The encryption 

mechanism ensures that the database server can process the query without having access to the actual plaintext content, thus 

enhancing privacy and security. 

 

 Upon receiving the encrypted query, the database processes the request without needing access to the user’s private key. 

This crucial step ensures that sensitive information remains protected even when stored or searched on an untrusted server. The 

https://doi.org/10.63282/30509416/IJAIBDCMS-V2I1P102


Prof. Liam Walsh / IJAIBDCMS, 2(4), 10-19, 2021 

11 
 

search is conducted on encrypted data, leveraging cryptographic techniques such as homomorphic encryption or searchable 

encryption, which allow computations on ciphertexts without decryption. 

 

 Once the database retrieves the relevant encrypted results, it returns them to the user. At this stage, the results remain 

unreadable to any intermediary entity, ensuring end-to-end encryption throughout the process. This guarantees that only the 

intended user, who possesses the decryption key, can access and interpret the retrieved information. 

 

 After receiving the encrypted search results, the user decrypts them locally using their private key. This step converts the 

results back into plaintext form, making them accessible while ensuring that no external party, including the database provider, 

ever gains access to the original data. This process demonstrates how encrypted search can be implemented effectively, 

maintaining both data confidentiality and usability. 

 

Figure 1: Encrypted Search Process 

2. Homomorphic Encryption: Theoretical Foundations 
 Homomorphic encryption is a cryptographic technique that enables computations to be performed directly on encrypted 

data without requiring decryption. This property is particularly useful in privacy-preserving applications, such as secure cloud 

computing and confidential data analysis. When a computation is carried out on an encrypted input, the result, once decrypted, 

is identical to the result that would have been obtained if the same computation had been performed on the original plaintext. 

This capability allows for secure data processing in untrusted environments while ensuring data confidentiality. The 

fundamental strength of homomorphic encryption lies in its ability to maintain the security and privacy of sensitive information 

while still allowing meaningful operations to be performed. 

 

2.1 Definition and Properties 

 Homomorphic encryption is defined by its ability to support computations over encrypted data while preserving security. 

One of its key properties is homomorphism, which ensures that mathematical operations performed on ciphertexts correspond 

precisely to the same operations on their plaintext counterparts. This means that an encrypted sum of two values will yield an 

encrypted result that, when decrypted, is the same as the sum of the original plaintext values. Another crucial property is 

semantic security, which guarantees that ciphertexts do not reveal any information about the underlying plaintext, even in the 

presence of an adversary with significant computational power. This makes homomorphic encryption an essential tool for 

secure data outsourcing, enabling computations on encrypted data while protecting user privacy. 

 

2.2 Variants of Homomorphic Encryption 

 Homomorphic encryption is categorized into different types based on the extent to which computations can be performed 

on encrypted data. The simplest form is Partially Homomorphic Encryption (PHE), which supports either addition or 

multiplication, but not both. For instance, the ElGamal encryption scheme allows for multiplication operations on ciphertexts, 

while the Paillier encryption scheme enables additive operations. These schemes provide limited but useful functionality for 

certain cryptographic protocols, such as secure voting and privacy-preserving financial transactions. 

 

 A more advanced form is Somewhat Homomorphic Encryption (SHE), which supports both addition and multiplication 

but only for a limited number of operations. This limitation arises due to the accumulation of noise—random values introduced 
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during encryption to enhance security. Over time, excessive noise can corrupt the ciphertext, rendering it undecipherable. SHE 

schemes are often used in specialized applications where only a few encrypted operations are needed. 

 

 The most powerful and flexible variant is Fully Homomorphic Encryption (FHE), which enables an unlimited number of 

additions and multiplications on encrypted data. This breakthrough was first achieved by Craig Gentry in 2009, who introduced 

the concept of bootstrapping—a technique to reduce noise in ciphertexts and allow continued computations. Although FHE is 

computationally expensive, it provides unparalleled security and functionality, making it ideal for complex applications such as 

secure cloud computing, privacy-preserving machine learning, and encrypted search engines. 

 

2.3 Key Concepts 

 Several key concepts underpin the functioning of homomorphic encryption. One of the most important is noise and 

bootstrapping. In SHE and FHE schemes, ciphertexts accumulate noise during computations, which can eventually make 

decryption impossible. Bootstrapping is a process that refreshes the ciphertext, removing excess noise and allowing further 

operations. This technique is essential for practical implementations of fully homomorphic encryption, ensuring that 

computations remain accurate and decryptable even after many operations. 

 

 Another fundamental aspect is key generation, where a pair of cryptographic keys is created— a public key for encryption 

and a private key for decryption. The security of homomorphic encryption schemes is based on complex mathematical 

problems, such as the Learning With Errors (LWE) problem, which is widely regarded as computationally infeasible to solve 

efficiently. The strength of these problems ensures that even powerful adversaries cannot break the encryption without the 

corresponding private key. 

 

 The final step in the homomorphic encryption process is encryption and decryption. Encryption involves transforming 

plaintext data into ciphertext using the public key, ensuring that the original data remains confidential. Decryption, performed 

using the private key, reverses this process, restoring the original plaintext from the encrypted result. The ability to perform 

secure computations on encrypted data without exposing sensitive information makes homomorphic encryption a cornerstone 

of modern privacy-preserving technologies. 

 

3. Privacy-Preserving Machine Learning 
 Privacy-preserving machine learning (PPML) is an emerging field that focuses on enabling machine learning models to 

train and make predictions on sensitive data while ensuring the privacy and security of that data. Traditional machine learning 

models often require access to large datasets, which may contain sensitive personal or proprietary information. However, 

sharing such data with external entities, such as cloud service providers, poses significant privacy risks. PPML techniques aim 

to address these concerns by applying cryptographic and privacy-enhancing technologies that allow machine learning to be 

performed without exposing the underlying data. These techniques ensure that models can still learn meaningful patterns 

without compromising the confidentiality of the information being processed. 

 

3.1 Overview of PPML 

 PPML employs various privacy-preserving techniques to achieve secure machine learning. One widely used approach is 

differential privacy, which introduces carefully calibrated noise into the data or model outputs. This ensures that the presence 

or absence of any single data point does not significantly influence the outcome, thereby protecting individual privacy. Another 

important method is secure multi-party computation (SMPC), which enables multiple parties to collaboratively train a model or 

perform computations on their combined data without revealing their individual data to one another. This technique is 

particularly useful in scenarios where organizations or institutions need to work together without compromising confidentiality. 

Homomorphic encryption (HE) is another crucial method in PPML, allowing computations to be performed directly on 

encrypted data, thereby ensuring that the data remains secure even when processed in an untrusted environment, such as a 

cloud computing platform. Each of these approaches has unique strengths and trade-offs, making them suitable for different 

privacy-preserving applications in machine learning. 

 

3.2 Homomorphic Encryption in PPML 

 Homomorphic encryption is particularly well-suited for PPML because it allows users to encrypt their data before sending 

it to a remote server for processing. Unlike other encryption schemes that require decryption before computations can be 

performed, HE enables machine learning models to operate directly on encrypted data. This ensures that even if the cloud 

server or computing infrastructure is compromised, the underlying data remains inaccessible and secure. By using HE, 

organizations can leverage the power of cloud-based machine learning services while maintaining strict data privacy. This 

capability is especially valuable in healthcare, finance, and other industries where data confidentiality is of utmost importance. 
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For instance, a hospital can use homomorphic encryption to train a predictive model on patient records stored in the cloud 

without ever exposing the raw medical data. 

 

3.3 Challenges and Opportunities 

 While homomorphic encryption offers significant advantages for PPML, it also presents several challenges that must be 

addressed before it can be widely adopted. 

 

3.3.1 Computational Overhead 

 One of the most significant drawbacks of homomorphic encryption is its computational inefficiency. Performing 

mathematical operations on encrypted data requires complex cryptographic transformations, making HE-based computations 

considerably slower than their plaintext counterparts. This added computational cost can make large-scale machine learning 

tasks prohibitively expensive in terms of processing power and time. Researchers are actively working on optimizing HE 

algorithms and developing specialized hardware accelerators to mitigate this issue and make HE more practical for real-world 

applications. 

 

3.3.2 Noise Management 

 Another major challenge in homomorphic encryption is noise accumulation. As computations are performed on encrypted 

data, noise is introduced, which can eventually corrupt the ciphertext and make decryption impossible. Managing this noise is 

critical to ensuring the accuracy and reliability of the machine learning model. Techniques such as bootstrapping help refresh 

the ciphertext and reduce noise, enabling more extensive computations, but they come with a significant computational cost. 

Finding efficient ways to manage noise while maintaining accuracy remains an active area of research in PPML. 

 

3.3.3 Data Size 

 Homomorphic encryption schemes produce ciphertexts that are significantly larger than the corresponding plaintext data. 

This increase in data size leads to higher storage and communication costs, making it challenging to efficiently transfer 

encrypted data over networks. For machine learning applications that require large datasets, such as image recognition or 

natural language processing, this can be a major bottleneck. Compression techniques and optimized encryption schemes are 

being explored to address this issue and make HE more feasible for large-scale applications. 

 

3.3.4 Opportunities 

 Despite these challenges, homomorphic encryption presents numerous opportunities for advancing privacy-preserving 

machine learning. One of the biggest advantages of HE is its ability to provide enhanced privacy, ensuring that data remains 

protected even when stored or processed on untrusted servers. This makes HE particularly valuable in sectors where data 

security is a top priority, such as healthcare, finance, and government services. 

 

 Another key opportunity is flexibility. Fully homomorphic encryption (FHE) supports a wide range of mathematical 

operations, making it suitable for complex machine learning models that require multiple layers of computation. While current 

implementations are computationally expensive, ongoing advancements in cryptographic research and hardware acceleration 

are expected to significantly improve the efficiency of HE-based machine learning. Homomorphic encryption holds promise 

for scalability. As computing power continues to advance, and as optimizations in homomorphic encryption algorithms are 

developed, the computational overhead associated with HE is expected to decrease. This will make it more practical for real-

world deployment, allowing organizations to securely train and deploy machine learning models without compromising data 

privacy. The integration of homomorphic encryption with cloud computing and federated learning frameworks is also expected 

to drive widespread adoption in privacy-sensitive domains. 

 

4. Homomorphic Encryption in Machine Learning Pipelines 
 Homomorphic encryption (HE) can be integrated into machine learning pipelines to ensure data privacy during model 

training and inference. A typical machine learning pipeline involves several stages, including data preprocessing, model 

training, and post-processing. When HE is incorporated, these stages require additional steps to encrypt and decrypt data while 

maintaining its usability for computations. The primary goal is to perform computations on encrypted data while preserving its 

integrity and confidentiality. This approach allows organizations to utilize cloud-based machine learning services without 

exposing sensitive information, making it particularly useful in privacy-sensitive fields such as healthcare, finance, and 

government applications. 

 

4.1 Overview of the Pipeline 

 Integrating homomorphic encryption into a machine learning pipeline involves a series of well-defined steps: 
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1. Data Preprocessing: Before encryption, data must be normalized and encoded into a format that is compatible with 

homomorphic encryption schemes. This ensures that computations remain accurate and efficient. 

2. Encryption: The processed data is encrypted using a public key, ensuring that it remains confidential while being 

used in computations. 

3. Model Training: Machine learning algorithms operate on the encrypted data using homomorphic operations. Since 

the data remains encrypted, the computations must be adapted to work within the constraints of HE schemes. 

4. Decryption: Once the model parameters have been computed, they are decrypted using the corresponding private key. 

This step restores the results into a human-readable and usable format. 

5. Post-Processing: The decrypted model parameters undergo final transformations, such as denormalization, before 

they are applied for predictions. 

Each of these stages presents unique challenges and requires specialized techniques to ensure efficiency and accuracy while 

preserving privacy. 

 

4.2 Data Preprocessing 

 Before encryption, data must be carefully prepared to ensure compatibility with homomorphic encryption operations. 

Preprocessing involves data normalization and data encoding, both of which are critical for maintaining numerical stability and 

ensuring efficient computations. 

 

4.2.1 Data Normalization 

 Since homomorphic encryption operates on numerical values, it is essential to normalize data before encryption. Min-max 

scaling and z-score normalization are commonly used techniques. Min-max scaling transforms data into a fixed range, typically 

between 0 and 1, while z-score normalization standardizes data based on its mean and standard deviation. Normalization is 

particularly important for machine learning models that involve arithmetic operations, as it helps maintain numerical 

consistency and prevents excessive noise accumulation during encrypted computations. 

 

4.2.2 Data Encoding 

 Data encoding ensures that all input features are represented in a format compatible with homomorphic encryption. For 

numerical data, floating-point values may need to be approximated using integer encoding, as many HE schemes do not 

natively support floating-point arithmetic. Categorical data, such as labels or discrete feature values, can be transformed using 

one-hot encoding or integer mapping. Proper encoding is essential to maintain the integrity of machine learning computations 

on encrypted data. 

 

4.3 Encryption 

 Once the data is preprocessed, it is encrypted to ensure privacy throughout the machine learning pipeline. Encryption 

involves two key processes: 

 

4.3.1 Key Generation 

 A secure key generation algorithm is used to create a public-private key pair. The public key is used to encrypt data before 

transmission or computation, while the private key is used to decrypt results after processing. The security of homomorphic 

encryption relies on complex mathematical problems, such as the Learning With Errors (LWE) problem, which makes it 

computationally infeasible for adversaries to decrypt ciphertexts without the private key. 

 

4.3.2 Ciphertext Generation 

 Once the keys are generated, data is encrypted using the public key. Each numerical value in the dataset is transformed 

into an encrypted form, known as ciphertext. This ciphertext can then be transmitted or stored securely, ensuring that even if an 

unauthorized party gains access to the data, it remains unreadable without the private key. However, since homomorphic 

encryption increases data size, storage and transmission efficiency must be considered. 

 

4.4 Model Training 

 Training a machine learning model on encrypted data requires specialized techniques that allow computations to be 

performed directly on ciphertexts. Homomorphic encryption supports two fundamental operations: 

4.4.1 Homomorphic Operations 

• Addition: Enables the summation of encrypted values, which is useful for computing gradients in optimization 

algorithms. 

• Multiplication: Supports element-wise product computations, essential for operations like dot products in neural 

networks and linear regression models. 
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• Bootstrapping: A technique used in fully homomorphic encryption (FHE) to reduce accumulated noise in ciphertexts, 

allowing for deeper computations without corruption. 

 

4.4.2 Algorithm Example 

The following algorithm demonstrates the use of homomorphic encryption in a simple linear regression model: 

# Key generation 

public_key, private_key = generate_keys() 

 

# Data preprocessing 

X = normalize_data(X) 

y = normalize_data(y) 

 

# Encryption 

X_enc = encrypt_data(X, public_key) 

y_enc = encrypt_data(y, public_key) 

 

# Model training 

w_enc = train_linear_regression(X_enc, y_enc) 

 

# Decryption 

w = decrypt_data(w_enc, private_key) 

 

# Post-processing 

w = denormalize_data(w) 

 

4.5 Decryption 

 Once the model has been trained on encrypted data, the computed parameters must be decrypted before they can be used 

for making predictions. The decryption process uses the private key to transform ciphertexts back into plaintexts. Since 

homomorphic encryption schemes introduce noise during computations, it is essential to verify the accuracy of decrypted 

results. Ensuring that the noise remains within acceptable limits is crucial for maintaining the reliability of trained models. 

4.6 Post-Processing 

After decryption, the final step in the pipeline is post-processing, where the decrypted model parameters are converted into a 

usable format. This may involve: 

• Denormalization: Converting model parameters back to their original scale, ensuring that predictions remain 

interpretable. 

• Formatting: Representing model outputs in a form that can be integrated into downstream applications. 

 

5. Performance Evaluation 
 Evaluating the performance of the proposed homomorphic encryption-based machine learning algorithm is crucial to 

understanding its effectiveness and feasibility for real-world applications. The evaluation primarily focuses on computational 

efficiency, accuracy, and resource utilization. Given the complexity of homomorphic encryption (HE) operations, it is essential 

to assess how the added security impacts machine learning tasks such as classification on benchmark datasets. 

 

5.1 Experimental Setup 

 To conduct a comprehensive evaluation, experiments were performed in a cloud computing environment to simulate real-

world deployment scenarios. The cloud-based setup provides the computational power required for homomorphic operations, 

which are known to be resource-intensive. 

• Hardware: The experiments were conducted using AWS EC2 instances configured with 16 virtual CPUs (vCPUs) and 

64 GB RAM. This setup ensures that the encryption, computation, and decryption processes are executed efficiently, 

minimizing potential hardware limitations. 

• Software: The implementation was carried out using Python 3.8 along with libraries such as PyCryptodome (for 

cryptographic operations) and TensorFlow 2.3 (for machine learning model training and evaluation). The choice of 

these libraries ensures compatibility with HE-based operations and efficient model training. 

The cloud-based experimental setup allows scalability and ensures that the results obtained are relevant for real-world privacy-

preserving machine learning applications, particularly in environments where sensitive data must be kept confidential. 
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5.2 Datasets 

To assess the performance of the algorithm, experiments were conducted on two widely used benchmark datasets: 

1. MNIST: A dataset consisting of handwritten digits (0-9), with each image represented as a 28x28 grayscale image. 

This dataset is commonly used for evaluating classification models, particularly in deep learning research. 

2. CIFAR-10: A dataset comprising 32x32 color images belonging to 10 different classes (e.g., airplanes, cars, birds, 

etc.). Unlike MNIST, CIFAR-10 presents a more challenging classification problem due to its complex features and 

higher dimensionality. 

These datasets were chosen because they provide a solid basis for evaluating machine learning models in terms of accuracy, 

computational efficiency, and memory usage. The contrast between MNIST and CIFAR-10 allows for a deeper understanding 

of how homomorphic encryption affects models with different levels of complexity. 

 

5.3 Metrics 

To evaluate the impact of homomorphic encryption on machine learning performance, three key metrics were considered: 

• Accuracy: The percentage of correctly classified instances in the test set. This metric determines how well the 

encrypted machine learning model generalizes to new data. 

• Computation Time: The total time required to train the model, including encryption, homomorphic operations, and 

decryption. Since HE-based computations are inherently slower than plaintext computations, this metric highlights the 

trade-offs between security and efficiency. 

• Memory Usage: The amount of memory consumed during training. Since homomorphic encryption significantly 

increases the size of encrypted data, evaluating memory usage is critical for assessing scalability. 

These metrics provide a comprehensive view of the feasibility of homomorphic encryption in real-world machine learning 

applications, particularly in privacy-sensitive environments. 

 

5.4 Results 

 The experimental results obtained from training the encrypted models on the MNIST and CIFAR-10 datasets are 

summarized in the following sections. 

5.4.1 MNIST Dataset 

Table 1: Performance Metrics for MNIST and CIFAR-10 Using Homomorphic Encryption 

Metric Value 

Accuracy 97.5% 

Computation Time 240 minutes 

Memory Usage 12 GB 

 The encrypted model achieved a high accuracy of 97.5%, comparable to conventional models trained on plaintext data. 

However, the training time of 240 minutes is significantly higher than that of traditional deep learning models trained without 

encryption, which typically require only a few minutes. Additionally, the memory usage of 12 GB indicates that homomorphic 

encryption introduces a substantial overhead in terms of storage requirements. 

 

5.4.2 CIFAR-10 Dataset 

Table 2: Evaluation of HE-Enabled Machine Learning on MNIST and CIFAR-10 

Metric Value 

Accuracy 85.3% 

Computation Time 480 minutes 

Memory Usage 24 GB 

 For the CIFAR-10 dataset, the encrypted model achieved an accuracy of 85.3%, which is reasonable given the increased 

complexity of the dataset. However, the training time increased to 480 minutes, highlighting the computational cost associated 

with performing homomorphic operations on high-dimensional data. The memory usage of 24 GB further underscores the 

significant resource demands of HE-based models, particularly for datasets with larger image sizes and higher feature 

complexity. 

 

5.5 Discussion 

 The results highlight both the strengths and limitations of using homomorphic encryption in machine learning pipelines. 

Strengths: 
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• High Accuracy: Despite the encryption overhead, the models achieved competitive accuracy levels comparable to 

traditional plaintext models. This demonstrates that homomorphic encryption does not compromise model 

performance in terms of predictive accuracy. 

• Privacy Preservation: The primary advantage of homomorphic encryption is that it allows computations to be 

performed on encrypted data, ensuring that sensitive information remains confidential throughout the training process. 

This is particularly valuable in scenarios where data privacy is a top priority, such as healthcare, finance, and cloud-

based AI applications. 

Challenges: 

• Computational Overhead: The results clearly indicate that HE-based training requires significantly more computation 

time than conventional training methods. The increase in training time (from minutes to hours) is mainly due to the 

complexity of homomorphic operations such as encrypted multiplications and bootstrapping. 

• Memory Consumption: Homomorphic encryption significantly increases the size of encrypted data and model 

parameters, leading to higher memory usage. This can be a limiting factor for deploying HE-based machine learning 

models on resource-constrained environments, such as mobile devices or edge computing platforms. 

• Scalability Issues: While HE is promising for privacy-preserving machine learning, its practical deployment for large-

scale datasets remains challenging due to its high resource requirements. Improving scalability through optimized 

cryptographic techniques and hardware acceleration (e.g., GPUs and TPUs) is an area of active research. 

 

Table 3: Performance Evaluation Results 

Dataset Accuracy Computation Time Memory Usage 

MNIST 97.5% 240 minutes 12 GB 

CIFAR-10 85.3% 480 minutes 24 GB 

 

6. Future Directions 
 The development and adoption of homomorphic encryption (HE) in privacy-preserving machine learning (PPML) are 

promising but come with notable challenges, primarily related to computational efficiency and scalability. Future research 

should focus on addressing these challenges through hardware acceleration, hybrid approaches, advanced cryptographic 

techniques, and real-world applications. 

 

6.1 Hardware Acceleration 

 One of the most significant challenges of homomorphic encryption is its computational overhead, which makes operations 

on encrypted data much slower than their plaintext counterparts. The use of hardware acceleration can mitigate this issue by 

leveraging parallel processing capabilities of specialized hardware. 

• GPUs (Graphics Processing Units): GPUs are widely used in machine learning for accelerating matrix operations. 

Their parallel processing ability can be exploited to accelerate homomorphic encryption computations, particularly for 

tasks like encrypted matrix multiplications and bootstrapping. 

• FPGAs (Field-Programmable Gate Arrays): FPGAs offer hardware-level programmability and can be optimized for 

specific cryptographic operations. Implementing HE-based computations on custom FPGA architectures can 

significantly reduce latency and power consumption. 

• TPUs (Tensor Processing Units): TPUs, designed for AI workloads, may also be adapted for HE-based machine 

learning models, though further research is needed to explore their potential in cryptographic computations. 

Future research should focus on designing hardware-optimized implementations of HE schemes, making them practical for 

large-scale machine learning applications. 

 

6.2 Hybrid Approaches 

 Homomorphic encryption, while powerful, is not always the most efficient solution for privacy-preserving machine 

learning. Hybrid approaches that combine HE with other privacy-enhancing techniques can help achieve a balance between 

security and computational efficiency. 

• HE + Differential Privacy (DP): Differential privacy ensures that individual data points remain unidentifiable by 

adding random noise to computations. By combining HE with DP, it is possible to reduce the need for bootstrapping, 

thereby improving efficiency while still maintaining strong privacy guarantees. 

• HE + Secure Multi-Party Computation (SMPC): SMPC enables multiple parties to collaboratively compute functions 

on their private data without revealing it. Combining HE with SMPC can improve scalability and efficiency in 

distributed machine learning scenarios, such as federated learning. 
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• HE + Trusted Execution Environments (TEE): TEEs, such as Intel SGX, provide secure enclaves for performing 

computations on sensitive data. Using HE to encrypt data before storing it and leveraging TEEs for decryption and 

execution can enhance both security and efficiency. 

These hybrid approaches can reduce computation time and memory overhead, making privacy-preserving machine learning 

more feasible for real-time and large-scale applications. 

 

6.3 Advanced Cryptographic Techniques 

 As homomorphic encryption continues to evolve, advances in cryptographic techniques can lead to more efficient, secure, 

and scalable encryption schemes. Some key areas of interest include: 

• Lattice-Based Cryptography: Many modern HE schemes, including those based on the Learning With Errors (LWE) 

problem, rely on lattice-based cryptography. Further research into efficient lattice-based HE implementations can 

enhance performance. 

• Post-Quantum Cryptography (PQC): With the rise of quantum computing, classical cryptographic schemes (e.g., 

RSA, ECC) may become vulnerable. Post-quantum cryptographic techniques, particularly fully homomorphic 

encryption based on quantum-resistant assumptions, are critical for long-term security. 

• Compressed Ciphertexts: Reducing the size of encrypted data can improve memory usage and communication 

efficiency. Techniques for compressing ciphertexts without compromising security are an active area of research. 

• Optimized Bootstrapping: Bootstrapping remains the most computationally expensive operation in FHE. Developing 

faster bootstrapping algorithms is crucial for making FHE more practical for real-world applications. 

Ongoing research in these areas can significantly improve the efficiency and security of homomorphic encryption, making it 

more viable for large-scale adoption. 

 

6.4 Practical Applications 

 To bridge the gap between theory and practice, homomorphic encryption must be tested and optimized for real-world 

applications where privacy is paramount. Some key areas include: 

• Healthcare: Hospitals and research institutions can use HE to perform secure computations on patient data without 

exposing sensitive medical records. Applications include privacy-preserving disease prediction models and secure 

genomic analysis. 

• Finance: Banks and financial institutions can use HE to enable secure fraud detection, risk assessment, and credit 

scoring without revealing individual customer data. 

• Cloud Computing: Homomorphic encryption allows organizations to store and process encrypted data in the cloud 

while maintaining data confidentiality. This can be crucial for AI-as-a-Service (AIaaS) platforms. 

• Government and Defense: Secure data analytics using HE can be applied in national security, intelligence, and 

privacy-preserving census data analysis. 

Collaboration between academia, industry, and policymakers is essential for integrating HE into commercial applications, 

ensuring both security and usability. 

 

7. Conclusion 
 Homomorphic encryption represents a groundbreaking advancement in privacy-preserving machine learning, particularly 

in cloud-based environments where data confidentiality is a major concern. By allowing computations on encrypted data 

without exposing the underlying plaintext, HE provides a strong security foundation for privacy-sensitive applications. 

However, despite its advantages, HE faces significant challenges, particularly in terms of computational overhead, memory 

usage, and scalability. The performance evaluation conducted in this study demonstrates that while HE-based models can 

achieve high accuracy, the increase in computation time and memory requirements makes them less practical for large-scale, 

real-time applications. 
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