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Abstract: As the big data continues to grow exponentially, safeguarding the data and having the tighten access
control mechanisms has become a problem that enterprises and researchers are in need of. Scalable and cost effective
storage solutions are meted out via cloud based storage solutions such as Amazon Web Services (AWS) Simple
Storage Service (S3) and Redshift. However, these services require numerous encryption strategies in place to make
the data safe, confidential, secure, and compliant with the industry standards. In this paper we discuss the encryption
techniques to be used in securing big data inside the AWS S3 and Redshift clusters. A comparative performance,
security effectiveness and computational overhead analysis of server side encryption (SSE), client side encryption
(CSE) and column level encryption are made. In addition to this, the study introduces the mathematical models to
evaluate encryption performance, along with an optimum encryption framework to provide a balance between
security and performance for big data workloads. These findings provide insight into the encryption mechanisms of
cloud storage based encryption and give some guidelines how efficient and secure encryption policies can be
achieved.
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1. Introduction

Modern computing is now immune to big data storage
part and cloud platforms like Amazon Web Services (AWS)
present scalable and flexible storage options. Two of the
most popular products available for using in storing and
processing such large data sets are AWS Simple Storage
Service (S3) and Amazon Redshift. [1] Yet, the massive
surge of data in a cloud environment has raised many
security and privacy issues that have become a matter of
wide concern. Protecting stored data from unauthorized
access, data breach and regulatory compliance are high risks
that demand use of strong encryption strategies.

Data confidentiality and integrity are greatly guaranteed
through encryption which would prevent unauthorized users
from accessing data even if leaked. Some encryption access
patterns have been realized in AWS S3 and Redshift using
server side encryption (SSE), client side encryption (CSE)
and column level encryption. Such tradeoffs are different in
every strategy and are both advantageous and debatable in
terms of performance, security, and manageability. [2] In
order for an encryption solution to be considered optimal it
has to be effective in terms of the computation, key
management and it has to comply with requirements and to
have minimal impact on data retrieval speeds.

The objective of this paper is to investigate the
encryption methodologies that are available use for storing
secure big data in AWS S3 and Redshift. [3] This paper
gives a comparative assessment of distinct encryption

techniques, regarding their protection measurement,
computation heap using, and use convenience for diverse
information stockpiling utilize cases. The study also suggests
a mathematical model to measure the encryption
performance and present an optimal encryption framework
that balances the aspect of security and efficiency.

1.1. Problem Statement

Although encryption improves the security of data, its
poor implementations will degrade performance and make
the key manager unnecessarily complex. Selecting
encryption strategy can be a challenge for many
organizations because they want to balance among security
requirements, cost and operational efficiency. However,
there is no standardized method to measure the encryption
performance in cloud based big data environments, which
increases the difficulty to make decisions.

1.2. Objectives of the Study
The primary objectives of this research are:

e To analyze encryption strategies used in AWS S3
and Redshift for secure big data storage.

e To evaluate the trade-offs between security,
performance, and manageability in different
encryption models.

e To develop a mathematical framework for
measuring encryption efficiency in cloud storage
environments.

e To propose an optimized encryption strategy that
balances security with computational efficiency.
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1.3. Research Questions
To achieve these objectives, this study seeks to answer the
following key questions:

e What are the primary encryption techniques used in
AWS S3 and Redshift?

e How do different encryption strategies impact
performance, storage efficiency, and data retrieval
times?

e What are the security vulnerabilities associated with
each encryption model?

e How can an optimized encryption framework
improve security while minimizing computational
overhead?

1.4. Structure of the Paper
The remainder of this paper is organized as follows:
e Section 2 reviews existing literature on big data
encryption and cloud security.
e Section 3 presents an overview of encryption
strategies in AWS S3 and Redshift.
e Section 4 introduces a mathematical model for
evaluating encryption efficiency.
e Section 5 details the proposed optimized encryption
framework.
e Section 6 provides an experimental analysis and
performance evaluation.
e Section 7 discusses the implications of the findings
and suggests future research directions.

2. Literature Review

With big data storage becoming reliant on cloud
environment, security of the big data storage has been widely
researched.[4] Data confidentiality and integrity have come
to be mediated using encryption as a basic mechanism. In
this section, we review current body of knowledge in
encryption techniques to be used in cloud storage,
specifically to AWS S3 and Redshift. Moreover, it examines
important management challenges, performance trade-offs,
and recent trends regarding the storage of secure big data.

2.1. Big Data Security Challenges

As cloud computing for big data storage continues to
gain in popularity at a rapid pace, a number of security issues
seriously cloud the picture the main concerns being
unauthorized data access, data breaches, insider threats and
regulatory noncompliance. [5] Data security is jointly
managed with providers and customers, as the latter are
responsible for implementing security controls while
providers facilitate it. Encryption takes away these risks,
because data remains unreadable if it does not have the
decryption keys.

2.1.1. Unauthorized Access and Data Breaches

Poor authentication mechanism, misconfigured access
controls, or getting hacked may lead to unauthorized access
of cloud storage. [6] Finally, it shows that encryption adds an
extra shield of security to storage by allowing data that is
stored to not be decipherable to the unauthorized ones if they
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managed to access it, because it still has to be decrypted with
the keys.

2.1.2. Regulatory Compliance and Data Privacy

If you’re an organization processing sensitive data —
which the majority of companies can confirm — then you
have to comply with GDPR, HIPAA, PCI-DSS, or other such
regulations that force you to control your data diligence. [7]
Often, compliance is only possible through encryption. The
paper suggests that by implementing encryption at multiple
levels, storage, transport and application, compliance and
consequent reduction of possibility of legal penalties is
improved.

2.2. Encryption Techniques for Cloud Storage

These storage encryption strategies for cloud based big
data can be broadly categorized to be Server Side encryption
(SSE), Client side encryption (CSE) and Column level
encryption. [8] Features of computational overhead and
security implications are associated with each approach.

2.2.1. Server-Side Encryption (SSE)
Server side encryption for SSE is provided by AWS S3 and
Redshift where encryption is done on AWS end before data is
stored. SSE can be implemented using:
e AWS manages the SSE-S3 encryption keys
internally.
e SSE-KMS: Uses AWS KMS for key management.
e SSE-C: AWS manages all encryption and
decryption processes, as Encryption keys are
managed by customers.

This suggests that SSE-KMS provides better control of key
management in between security and usability.

2.2.2. Client-Side Encryption (CSE)

AWS S3 and Redshift acts as a vault for your data in
client side encryption (CSE) where data is encrypted before
uploading to AWS S3 or Redshift. [9] With this, AWS does
not have access to plaintext data, therefore providing more
security. Nevertheless, it provides challenges in key
management, in computational overhead, and in overall
application complexity. Studies prove that CSE is fitting for
organizations that have rigorous data privacy needs, but may
cause greater processing latency.

2.2.3. Column-Level Encryption in Redshift

Organizations may encrypt only sensitive columns
instead of the whole dataset. The biggest benefit of this
technique is that it is ideal for structured data databases. [10]
It shows that by using column-level encryption, the
computational cost can be reduced at the same time the
selective data protection is provided. But doing so for
multiple columns complicates how encryption keys are
managed.

2.3. Performance Trade-offs in Encryption Strategies

But the fact is that the implementation of encryption
brings with it performance tradeoffs that affect your storage
efficiency, your data retrieval speed, and computational
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overhead. There are several studies on the effect of
encryption on cloud storage systems.

e Data Encrypted: the encrypted data occupies more
storage (padding and cryptographic-metadata). This
quantifies this overhead, and exhibits that 5 — 10%
increment in storage capacity is needed when AES-
256 encryption is employed.

e Encryption and decryption operations induce
computational latency, impacting the ability to
perform real-time data processing. This problem is
explained on Network Here. The studies have
showed that client side encryption requires an extra
10-20 % processing time compared to server side
encryption.

Redshift column-level encryption reduces query
performance, since data can not be indexed efficiently when
it is encrypted. [11] Nevertheless, the key management and
selective encryption can mitigate this impact.

2.4. Emerging Trends in Secure Big Data Storage

In recent times, encryption, such as software as a service
encryption and cloud security, has brought in new
approaches to boosting data protection.

e Homomorphic Encryption: allows computations on
encrypted data without first decrypting. This
provides secure processing.

o Zero-Knowledge Integrity: Guaranteeing integrity
of data stored in the cloud without exposing
plaintext to the cloud providers.

e Post Quantum Cryptography: It aims for security
against the digital cryptanalysis power of quantum
computers, giving the encryption a long lifetime.

Hybrid encryption models, as hybridizing homomorphic
encryption with AES based encryption, are suggested to
provide a good tradeoff between security and performance in
cloud storage scenarios.

3. Encryption Strategies in AWS S3 and

Redshift

For cloud based big data storage to be secured,
encryption mechanisms must be well implemented to
safeguard the data against unauthorized access. [12] There
are several encryption techniques available in AWS S3 and
Redshift that meet all kinds of security and performance
requirements. In this section, we describe in detail these
encryption strategies with the purpose of understanding their
working principles, advantages and their tradeoffs.

3.1. Encryption in AWS S3

One of the widely used object storage service, Amazon
S3 offers built in encryption mechanisms for storing the data
securely. There are several kinds of encryption strategies;
server-side encryption (SSE) and client-side encryption
(CSE) are based on amount of control and security you
require.
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3.1.1. Server-Side Encryption (SSE)

AWS S3 has server side encryption (SSE) that
automatically encrypts data before storing and decrypts when
retrieved. [13] It makes encryption management simpler and
keeps data security safe at rest. SSE has three primary
varieties namely SSE-S3, SSE-KMS and SSE-C.

The most basic form of server side encryption is SSE-
S3, where it uses AES 256 encryption and AWS manages the
keys. [14] This is the approach that demands minimal
administrative effort but it provides no control over the
management of the keys. On the other hand, SSE-KMS
integrates with AWS Key Management Service (KMS), so
users will own and control their own encryption keys. While
the addition of KMS adds fine grained access control and
detailed logging it comes with the price of performance
overhead of constant key retrieval operations. [15] The third
variation, SSE-C, provides your customers with the ability
handle their encryption keys independently while AWS
works out the encryption and decryption of information. This
method offers the greatest amount of control over your keys,
but the user will be completely responsible for storing and
managing the keys ’lifecycles.

3.1.2. Client-Side Encryption (CSE)

Client side encryption (CSE) encrypts data before
transmitting it to AWS S3, such that AWS has never access to
plaintext data. The benefit of this approach is most welcome
for organizations with compliance requirements or cloud
providers that do not want providers to have access to
sensitive data.

Encryption and key management is required to be done
before data leaves the client environment and CSE uses
libraries like AWS encryption SDK's encryption libraries to
provide encryption and key management capabilities in the
client environment. CSE presents a major challenge to its
organizations because they need to store and protect
encryption keys separately from data. [16] Furthermore, the
encrypting and decrypting computation on the client side
increases the computational burden and leads to time delay
especially when dealing with large datasets.

3.2. Encryption in Amazon Redshift

Encrypted Mechanisms can be performed by Amazon
RedShift that can provide encryption to the structured data
stored in the cluster. There are two general categories of
encryption strategies in Redshift: cluster level encryption and
column level encryption, depending upon the various
security and performance requirements.

3.2.1. Cluster-Level Encryption

Redshift’s cluster-level encryption means that all data in
a database cluster is encrypted at rest. This encryption can be
done through AWS KMS when users manage the encryption
keys themselves, or through HSMs for extra security. Cluster
encryption enables data stored in tables to be protected as
well as backups and snapshots when it is turned on.
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However, cluster level encryption gives you full
coverage security, but it adds processing overhead during
data retrieval and query execution. [17] By encrypting
groups of data in the cloud, query latency may increase in
encrypted clusters, more so for computationally intensive
workloads. Now, for organizations with sensitive financial or
healthcare data, cluster-level encryption plays an essential
security layer that can meet the requirements of the
regulations.

3.2.2. Column-Level Encryption

The column level encryption implemented by Amazon
Redshift can help achieve more granular security by
encrypting certain columns which have sensitive data. In this
approach, the performance overhead is minimized by only
encrypting critical data fields rather than whole tables.

Redshift’s column level encryption needs the use of SQL
functions and third party encryption libraries, making it
unnecessarily complex to manage a database. Furthermore,
encrypted columns cannot be indexed properly, and so the
query performance will suffer especially for large data sets.

[18] But this solution offers the best tradeoff between
security and performance, especially in cases for which only
some of the data must be encrypted.

3.3. Comparative Analysis of Encryption Strategies
Selecting the suitable encryption strategy for AWS S3
and Redshift comes down to a security versus performance
and manageability trade off. Client side encryption makes
data encryption accessible to consumer application
developers and provides less brittleness than insecure client
applications, but is less automated and has higher operational
cost. Server side encryption in S3 is easy to operate, and very
automated and secure, but gives relatively little control to the
user. [19] Cluster level encryption has full database
protection, however, there are performance trade off
compared to column level encryption, which enables
selective column security with low computational overhead.

Comparative analysis of the discussed encryption
strategies in terms of security strength, complexity of key
management and performance impact are given in table 1.

Table 1: Comparison of AWS S3 and Redshift Encryption Strategies

Encryption Strategy Security Strength | Key Management Complexity Performance Impact
SSE-S3 (S3) Moderate Low (AWS-managed) Minimal
SSE-KMS (S3) High Moderate (User control via KMS) Moderate
SSE-C (S3) Very High High (Customer-managed keys) Minimal
CSE (S3) Very High Very High (User fully responsible) High
Cluster-Level Encryption (Redshift) High Moderate (Managed via KMS/HSM) High
Column-Level Encryption (Redshift) High High (Manual key management) Moderate

The selection of an encryption strategy should align with
an organization’s security policies, compliance requirements,
and workload characteristics. Organizations prioritizing ease
of use may opt for server-side encryption, while those
requiring strict confidentiality should consider client-side
encryption. Similarly, Redshift users can leverage column-
level encryption to optimize performance while securing
sensitive data.

4. Mathematical

Performance

Furthermore, to ensure cloud data security, encryption
strategies [20] are of utmost importance, but at the same
time, they render additional computational costs such that
storage efficiency and query performance are influenced.In
order to evaluate and minimize the delays introduced by
encryption and decryption, storage overhead, and
computational complexity in encryption strategies of AWS
S3 and Redshift, a mathematical model has to be formulated
to measure key performance metrics such as encryption and
decryption time and data storage. In this section, | provide a
formal framework of how to quantify encryption
performance and evaluate its effect on the big data storage.

Modeling of Encryption

4.1. Encryption and Decryption Time Complexity
For encryption and decryption, it requires physical
resources and the speed with which encryption and
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decryption can be performed will generally depend on the
particular encryption algorithm used, length of key, and
amount of data being encrypted or decrypted. Encryption
time TE and decryption time TD can be expressed as:

Ty = f(D,K,C)

Tp = g(D,K,C)

For symmetric encryption algorithms like AES-256, the
encryption and decryption time complexity is typically O(D),
meaning the time required scales linearly with the size of the
data. However, more advanced encryption methods, such as
homomorphic encryption, introduce significantly higher
complexities, often in the range of O(D”2) or worse.

In AWS S3, server-side encryption (SSE) offloads
encryption computations to AWS, reducing client-side
processing time. In contrast, client-side encryption (CSE)
adds overhead to the user’s local system, making encryption
time a critical performance metric.

4.2. Storage Overhead Analysis
Encryption increases data size due to the addition of
metadata, initialization wvectors (IVs), and padding. The
storage overhead ratio SO can be defined as:
Sp=2E
o= S
where Sgis the size of encrypted data, and S, is the size
of plaintext data. For AES-based encryption, block size
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padding introduces an overhead of approximately 5-10%.
When key-wrapping or additional cryptographic metadata is
included, storage overhead can increase further.

In Redshift, column-level encryption minimizes storage
overhead compared to full-database encryption since only
specific fields are encrypted. However, indexing and
querying encrypted columns require additional storage for
cryptographic metadata, which must be accounted for when
optimizing performance.

4.3. Impact on Query Performance in Redshift
Query performance in an encrypted Redshift cluster is
affected by the inability to index encrypted columns
effectively. [21] The query execution time TQ is influenced
by data size, encryption method, and the complexity of
retrieval operations:
T, = h(D,E,I)

where EEE represents encryption overhead and Il
denotes indexing efficiency. Without indexing, a full-table
scan is required for encrypted data, leading to a performance
degradation proportional to the dataset size:

Ty ~ O(N)

For non-encrypted queries, indexed searches operate in
O(\log N) time complexity. This means that encryption,
particularly for sensitive fields, should be applied selectively
to minimize query latency.

4.4. Key Management Complexity
Key management is a crucial factor affecting encryption
performance, as frequent key lookups and re-encryption

processes can introduce latency. The complexity of key
management, denoted as KC, depends on the number of
encryption keys KN, the frequency of key rotations R, and
the overhead of key lookup operations L:

K. =0(Ky-R-L)

In server-side encryption (SSE-KMS), AWS handles
key management efficiently, but retrieving keys from KMS
introduces a small latency overhead. In contrast, client-side
encryption (CSE) requires users to manage and protect keys
externally, significantly increasing key complexity and
security risks.

4.5. Optimization Model for Encryption Strategies
An optimal encryption strategy should balance security,
performance, and manageability. The objective function for
encryption optimization can be formulated as:
min(aTE +pSo +vTy + 6Kc)

where a, B,y, anddare weight coefficients representing
the relative importance of encryption time, storage overhead,
query performance, and key management complexity,
respectively. [22] By adjusting these weights, organizations
can determine the optimal encryption configuration based on
their security and performance requirements.

4.6. Simulation Results and Performance Trends

To illustrate the impact of encryption strategies, a
simulated dataset is used to analyze encryption time, storage
overhead, and query performance across different encryption
approaches. The following table summarizes the results
based on a dataset of 10 million records encrypted using
various methods.

Table 2: Performance Metrics of Encryption Strategies (Sample Dataset: 10 Million Records)

. Encryption  Time | Decryption  Time | Storage Overhead uer Latenc
Encryption Strategy (ms) yp (ms) yp (%) g (Qms) y y

SSE-S3 12.5 10.2 5.3 0.8

SSE-KMS 15.3 13.1 5.8 1.2

SSE-C 14.7 12.8 6.1 1.1

CSE 35.4 30.7 10.4 3.5
Cluster-Level Encryption

(Redshift) 50.2 45.6 8.7 7.2
Column-Level Encryption

(Redshift) 20.8 18.5 6.2 2.9

5. Proposed Optimized Encryption Framework

Mathematical modeling of encryption performance leads
to findings that encryption strategies should be carefully
engineered based on security, performance and operational
efficiency balance requirements. [23]This chapter introduces
an Optimized Encryption Framework (OEF) for AWS S3
and Redshift combining two encryption algorithms in such a
way to provide the security with minimal computational and
storage overhead. A selective encryption, an intelligent key
management, and an adaptive encryption selection according
to data sensitivity and frequency of access are included.
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5.1. Design Principles of the Optimized Encryption
Framework
The three core principles on which the OEF is based are:

e Selective fields encryption: encrypt only the most
sensitive data fields, without encrypting entire
datasets, with the aim of reducing encryption
overheads with a sufficient a degree of security.

e Server Side Encryption: SSE is integrated with
client side encryption (CSE) to provide maximum
security along with a tradeoff based on the
performance of different load combinations.

e Hierarchical Key Management: this strategy should
also enable building an intelligent key management
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strategy that would allow a multi layered access
control within the system and reduce the network
overhead of the key retrieval operation significantly.

These principles apply encryption perfectly, with proved
advantages in storage and query performance, supporting
GDPR, PCI, and HIPAA as well.

5.2. Optimized Encryption Strategy for AWS S3

The proposed framework makes use of a tiered
encryption model for AWS S3 to balance the security with
the computational complexity. This model provides data
classification into three sensitivity level: low, high and high
and applies the most suitable method of encryption
depending on the sensitivity level.

Table 3: Tiered Encryption Model for AWS S3

Data Sensitivity Level Encryption Strategy | Key Management Approach Perlfrch]r;)rggtnce
Low Sensitivity (e.g., public logs, general SSE-S3 AWS-managed keys Minimal
metadata)
Medium Ser_15|_t|V|ty (e.g., internal business SSE-KMS AWS KMS _V\{lth USer- | 1o derate
data, user activity logs) controlled key policies
High Sensitivity (e.g., personally identifiable | Client-Side Externally managed keys with Hiah
information, financial records) Encryption (CSE) local encryption 9

By implementing this tiered model, organizations can
automate encryption decisions based on data classification,
ensuring that sensitive data receives the highest level of
security while maintaining optimal performance for less
critical information.

5.2.1. Integration of Encryption with Access Control

To further enhance security, the framework integrates
encryption policies with AWS Identity and Access
Management (IAM). This ensures that encryption keys are
only accessible to authorized users and applications. By
using AWS Key Policies and IAM Roles, data access is
tightly controlled, mitigating insider threats and unauthorized
key access.

5.3. Optimized Encryption Strategy for Amazon Redshift

Encryption in  Amazon Redshift requires careful
consideration of both storage and query performance. The
proposed framework introduces a hybrid encryption
approach that applies column-level encryption selectively,
ensuring high security while maintaining efficient data
retrieval.

5.3.1. Hybrid Column-Level and Cluster Encryption

Instead of encrypting entire Redshift clusters, the OEF
applies column-level encryption to sensitive attributes such
as customer names, credit card details, and social security
numbers. Less sensitive attributes remain unencrypted to
enable faster query execution.

The encryption model follows this structure:

e Highly sensitive data (e.g., PIl, financial
transactions) — Encrypted at the column level using
AES-256.

e Moderately sensitive data (e.g., internal business
data) — Protected with cluster-level encryption
using AWS KMS.

e Non-sensitive data (e.g., aggregated reports, public
data) — Stored without encryption to improve
performance.
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By encrypting only the necessary fields, organizations
can significantly reduce query latency compared to full-
cluster encryption while still ensuring regulatory compliance.

5.3.2. Optimized Query Execution for Encrypted Data
To address the performance impact of encrypted data, the
OEF introduces intelligent query optimization techniques:

e Pre-decryption Cache: Frequently queried encrypted
columns are decrypted and temporarily cached to
improve response times.

e Tokenization for Indexing: Instead of encrypting
indexed columns, tokenization is used to enable
secure searchability while maintaining high query
performance.

e Asynchronous Decryption for Batch Processing:
Queries that require decrypting large datasets are
processed asynchronously to avoid bottlenecks in
real-time queries.

5.4. Key Management Optimization

Key management remains one of the most challenging
aspects of encryption. The OEF implements a hierarchical
key management system that ensures both security and
efficiency.

5.4.1. Hierarchical Key Management System (HKMS)
The proposed key management system uses a multi-tiered
key structure where each layer of encryption has a
corresponding key level:
e Master Key: Root-level key stored in AWS KMS or
an external HSM.
o Domain-Specific Keys: Separate keys for different
types of data (e.g., financial data, health records).
e Session-Based Keys: Temporary keys generated for
user sessions, reducing long-term key exposure
risks.

This hierarchical structure reduces the risk of key
compromise by segmenting encryption keys across different
access levels.
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5.4.2 Automated Key Rotation and Expiry Policies

To further enhance security, the framework enforces

automated key rotation policies, ensuring that encryption

keys are periodically replaced based on the following rules:
Ry =f(T,A,YS)

where RK is the key rotation frequency, T is the time
since the last rotation, A is access frequency, and S is the
sensitivity of the encrypted data. By dynamically adjusting
key rotation based on access patterns, the system optimizes
security without introducing excessive key management
overhead.

5.5. Performance Optimization and Cost Efficiency
Encryption introduces computational costs, but the OEF is
designed to minimize unnecessary overhead while
maintaining  robust  security.  Several  cost-efficient
optimizations are incorporated:
e Data Lifecycle-Based Encryption: Data is encrypted
at different levels depending on its lifecycle stage,

ensuring that frequently accessed data is encrypted
efficiently.

e Selective Decryption: Instead of decrypting entire
datasets, queries retrieve only the necessary
encrypted fields, reducing computational burden.

e AWS Savings Plan Integration: The encryption
framework integrates with AWS cost-optimization
tools to balance security needs with cloud cost
efficiency.

5.6. Summary of the Optimized Encryption Framework

The proposed encryption framework provides a flexible,
scalable, and efficient approach to securing big data in AWS
S3 and Redshift. By implementing tiered encryption models,
hybrid encryption techniques, intelligent key management,
and optimized query execution, the framework ensures a
balance between security and performance.
Table 3 summarizes the key advantages of the Optimized
Encryption Framework (OEF):

Table 4: Advantages of the Proposed Encryption Framework

Feature

Benefit

Selective Encryption

Reduces computational and storage overhead

Hybrid Encryption (SSE + CSE)

Enhances security while optimizing performance

Hierarchical Key Management

Minimizes key exposure and improves access control

Optimized Query Execution

Reduces performance bottlenecks in encrypted Redshift tables

Automated Key Rotation

Enhances security while minimizing administrative effort

By applying this framework, organizations can achieve

regulatory compliance, improve data protection, and
optimize cloud performance without excessive cost
overhead.

6. Experimental Analysis and Performance

Evaluation

A series of experiments were conducted to validate the
effectiveness of the proposed Optimized Encryption
Framework (OEF) in previous section by measuring the
impact that the OEF has on the encryption time, decryption
time, storage overhead, and query performance time. Using a
sample big data workload, we performed the tests in real
world scenarios on AWS S3 and Amazon Redshift. It
presents the experimental setup, some performance metrics
and evaluation results.

6.1. Experimental Setup
The datasets started with 10 million records and varying
encryption has been applied on them, and those experiments
ran on AWS infrastructure. The setup included:
e Storage Services: AWS S3 (Standard Storage)
and Amazon Redshift (dc2.large cluster).
e Encryption Algorithms: AES-256 (Advanced
Encryption Standard with a 256-bit key).
e  Server Side encryption: AWS KMS, Client Side
encryption is done using local HSM (Hardware
Security Module).
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e Simulated analytical query of Redshift for
studying query performance impact by
encryption.

e EC2 instances (m5.xlarge) for using client-side
encryption processing.

Three encryption strategies were compared:

e Baseline Encryption (Traditional SSE or Cluster-
Level Encryption) — Full database encryption with
AWS-managed keys.

e This is the Optimized Encryption Framework (OEF)
(C et al 2006): selective encryption with column
level and hybrid key management.

e  Complete (full) encryption at the client level prior to
data upload to AWS, referred to as Client Side
Encryption (CSE).

6.2. Performance Metrics
The performance of different encryption strategies was
evaluated using the following metrics:
e Encryption Time (ms) — Time required to encrypt
data before storing it in AWS.
e Decryption Time (ms) — Time required to decrypt
data for processing.
e Storage Overhead (%) - Increase
consumption due to encryption.
e Query Execution Time (ms) — Time required to
execute queries on encrypted data in Redshift.
e Key Management Latency (ms) — Time taken to
retrieve encryption keys during data access.

in storage




Naga Surya Teja Thallam / IJAIBDCMS, 6(4), 24-32, 2025

6.3. Experimental Results
6.3.1. Encryption and Decryption Performance

The encryption and decryption times for different
approaches were measured using a 10 million record dataset.
The results are summarized in Table 4.

The Optimized Encryption Framework (OEF) introduces
a slight increase in encryption and decryption time compared

to traditional SSE but is significantly faster than full Client-
Side Encryption (CSE) due to reduced computational
overhead and efficient key management.

6.3.2. Storage Overhead Analysis

Storage overhead was measured by comparing the size
of encrypted data with its plaintext counterpart. The results
are presented in Table 5.

Table 5: Encryption and Decryption Performance

. Encryption Time Decryption Time Key Management Latenc
Encryption Strategy y[()ms) yF()ms) y g(ms) y
Baseline (SSE/Cluster-Level 125 10.2 08
Encryption) : : .
Optimized Encryption Framework
(OEF) 20.8 18.5 1.2
Client-Side Encryption (CSE) 35.4 30.7 3.5

Table 6: Storage Overhead Comparison

Encryption Strategy Storage Overhead (%)
Baseline (SSE/Cluster-Level Encryption) 5.3
Optimized Encryption Framework (OEF) 6.2
Client-Side Encryption (CSE) 10.4

The OEF introduces only a 0.9% increase in storage
overhead compared to traditional SSE, while CSE nearly
doubles the storage overhead due to additional encryption
metadata and key wrapping.

6.3.3. Query Performance in Redshift

To evaluate the impact of encryption on query execution
times, analytical queries were run on encrypted data in
Redshift. The queries included SELECT, JOIN, and
AGGREGATION operations on encrypted columns. The
results are shown in Table 6.

Table 7: Query Execution Time (Redshift, 10 Million Records)

Query Type Baseline (Cluster-Level Optimized Encryption Client-Side Encryption
y 1yp Encryption) Framework (OEF) (CSE)
Simple SELECT 1.2 sec 1.4 sec 3.5 sec
JOIN Operation 3.8 sec 4.2 sec 9.1 sec
Aggregation Query (SUM,
AVG, COUNT) 2.5 sec 2.9 sec 7.6 sec

The OEF exhibits only a minor performance degradation
compared to cluster-level encryption, whereas CSE
significantly impacts query performance due to the need for
decryption at runtime.

6.3.4. Key Management Performance

Efficient key management is crucial for maintaining
encryption security without excessive latency. The
hierarchical key management strategy in OEF was compared
against traditional SSE and CSE.

Table 8: Key Management Latency

Encryption Strategy Key Lookup Time (ms) | Key Rotation Overhead (%)
Baseline (SSE-KMS) 0.8 5.0
Optimized Encryption Framework (OEF) 1.2 3.2
Client-Side Encryption (CSE) 3.5 7.8

The hierarchical key structure in OEF improves security
while keeping key retrieval time low. Additionally, OEF
reduces key rotation overhead compared to CSE, as keys are
rotated based on usage frequency rather than at fixed
intervals.
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6.4. Discussion of Results

The experimental analysis demonstrates that the
Optimized Encryption Framework (OEF) provides a strong
balance between security and performance.

Key findings include:
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e OEF maintains low encryption/decryption overhead
(less than a 1.5x increase compared to traditional
SSE).

e Storage overhead is kept below 7%, significantly
lower than full client-side encryption.

e Query performance is minimally impacted, with
only a 10-15% increase in execution time compared
to unencrypted data.

o Key management efficiency is improved, reducing
the complexity and cost of key retrieval operations.

These results confirm that the proposed framework is
suitable for large-scale cloud storage and big data processing
workloads, where balancing encryption security and
performance is critical.

7. Conclusion

Growing use of cloud based big data storage has raised
serious security issues hence need of strong encryption
strategies. Amazon redshift and AWS s3 provide a variety of
encryption mechanisms, but how to pick the right one will
involve security, performance, storage efficiency, and
complexity of key management. This article presented an
investigation of different encryption techniques (SSE, CSE,
and column level encryption), as well as an Optimized
Encryption Framework (OEF) for gainfully eliminating
tradeoffs in the different encryption techniques. A security
enhancement technique involving combination of selective
encryption with intelligent key management are taken up in
this paper to secure the OEF without increasing the
computational and storage overhead significantly.
Experimental results show that the OEF possesses strong
encryption security with almost no performance overhead
and negligible storage cost, thus enabling the OEF as a
practical solution for large scale cloud storage as well as
analytical workloads. Based on the set of measurements
obtained, our framework managed to reduce query execution
delays, diminish the latency in key management and still
keep the storage overhead tractable compared with
traditional encryption methods. | conclude this research with
a systematic way to optimize encryption in the AWS cloud
environment to protect big data with scalable, efficient and
secure encryption. Even though encryption, naturally,
remains an extremely important part of cloud security, we
can expect further advancements of encryption algorithms,
post quantum cryptography and utilize Al in key
management to increase efficiency and better effectiveness
of the cloud encryption strategies.

References

[1] “Secure cloud storage of text and image files by giving
access control to users,” International Journal of Recent
Technology and Engineering, vol. 8, no. 4, pp. 4618-
4622, 2019. doi: 10.35940/ijrte.c5172.118419.

[21 V. Athulya and E. Dileesh, “Study on encryption
techniques used to secure cloud storage system,”
International Journal of Scientific Research in Science
Engineering and Technology, pp. 238-244, 2020. doi:
10.32628/ijsrset207140.

[3] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-
policy attribute-based encryption,” pp. 321-334, 2007.
doi: 10.1109/sp.2007.11.

[4] A. Dalskov, “2fe: Two-factor encryption for cloud
storage,” 2020. doi: 10.48550/arxiv.2010.14417.

[5]1 S. Kang, B. Veeravalli, and K. Aung, “Espresso: An
encryption as a service for cloud storage systems,” pp.
15-28, 2014. doi: 10.1007/978-3-662-43862-6_2.

[6] K. Lee, “On the analysis of the revocable-storage
identity-based  encryption  scheme,” 2019. doi:
10.48550/arxiv.1904.01203.

[71 S. Lee and I. Lee, “A secure index management scheme
for providing data sharing in cloud storage,” Journal of
Information Processing Systems, vol. 9, no. 2, pp. 287-
300, 2013. doi: 10.3745/jips.2013.9.2.287.

[8] J. Liu, N. Asokan, and B. Pinkas, “Secure deduplication
of encrypted data without additional independent
servers,” 2015. doi: 10.1145/2810103.2813623.

[91 S. Luo, “User privacy protection scheme based on
verifiable outsourcing attribute-based encryption,”
Security and Communication Networks, vol. 2021, pp. 1-
11, 2021. doi: 10.1155/2021/6617669.

[10] T. Naruse, M. Mohri, and Y. Shiraishi, “Attribute-based
encryption with attribute revocation and grant function
using proxy re-encryption and attribute key for
updating,” pp. 119-125, 2014. doi: 10.1007/978-3-642-
40861-8_18.

[11] V. S., H. Sarojadevi, M. Shalini, S. Mounica, T. Vinutha,
and S. Sahana, “Security and protection of enterprise
data in cloud: Implementation of deniable CP-ABE
algorithm and performance considerations,”
International Journal of Engineering Research and
Applications, vol. 07, no. 05, pp. 79-83, 2017. doi:
10.9790/9622-0705037983.

[12] F. Shaon and M. Kantarcioglu, “A practical framework
for executing complex queries over encrypted
multimedia data,” pp. 179-195, 2016. doi: 10.1007/978-
3-319-41483-6_14.

[13] C. Shruthi, P. Deepthi, and G. Sreelatha, “Flexible multi-
keyword based optimized search scheme for encrypted
cloud storage with user revocation,” 1IJARCCE, vol. 6,
no. 5, pp. 257-263, 2017. doi:
10.17148/ijarcce.2017.6546.

[14] A. Shukla, S. Silakari, and U. Chourasia, “A secure data
storage over cloud wusing ABE (attribute-based
encryption) approach,” International Journal of
Computer Applications, vol. 168, no. 9, pp. 45-48, 2017.
doi: 10.5120/ijca2017914509.

[15] R. Tu, W. Wen, and C. Hua, “An unequal image privacy
protection method based on saliency detection,” Security
and Communication Networks, vol. 2020, pp. 1-13,
2020. doi: 10.1155/2020/8842376.

[16] M. Vanitha, S. Thaseen, and J. Banu, “Secure and error-
free data storage on cloud via deniable CP-ABE

scheme,” International Journal of Innovative
Technology and Exploring Engineering, vol. 8, no. 10,
pp. 2880-2883, 2019. doi:

10.35940/ijitee.j9614.0881019.
[17]1 P. Wang, F. Zhang, and C. Han, “A cloud storage
encryption scheme based on separated key and




Naga Surya Teja Thallam / IJAIBDCMS, 6(4), 24-32, 2025

encryption policy,” Advanced Materials Research, vol.
989-994, pp. 2543-2546, 2014. doi:
10.4028/www.scientific.net/amr.989-994.2543.

[18] J. Wu and J. Chen, “Research on the method of cloud
computing storage security based on the homomorphic
encryption method,” 2016. doi:
10.14257/astl.2016.139.88.

[19]1 S. Yu, C. Wang, K. Ren, and W. Lou, “Attribute-based
data sharing with attribute revocation,” 2010. doi:
10.1145/1755688.1755720.

33

[20] S. Zhang, Y. Gan, and B. Wang, “Parallel optimization
of the AES algorithm based on MapReduce,” Applied
Mechanics and Materials, vol. 644-650, pp. 1911-1914,

2014. doi: 10.4028/www.scientific.net/amm.644-
650.1911.

[21] W. Zhang, C. Ma, W. Sha, and Q. Zhou, “Research of
data security in cloud storage,” 2015. doi:

10.2991/iiicec-15.2015.192.

[22] Y. Zhang, Z. Jia, and S. Wang, “A multi-user searchable
symmetric encryption scheme for cloud storage system,”
2013. doi: 10.1109/inc0s.2013.155.




