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Abstract: Emerging blockchain payment gateways have facilitated worldwide financial systems with unprecedented efficiency,
transparency, and decentralization. Yet, increasingly, such platforms become susceptible to complex financial risks such as fraud at
various scales, double-spending, Sybil attacks, and illegal access. The rule-based approaches that were traditionally implemented
are no longer adequate to keep up with the evolving threat landscape of decentralized finance (DeFi). This, therefore, serves to
strengthen the stance for considering ML models for at least real-time transaction analysis and fraud detection. Even with many
models offering good prediction capabilities, the lack of transparency raises serious concerns about issues of interpretability and
compliance—especially in environments that are financially regulated. The paper thus delves into the incorporation of explainable
machine learning (XML) techniques in blockchain payment risk assessment frameworks. Using model-agnostic tools such as
SHAP (SHapley Additive Explanations) and LIME (Local Interpretable Model-Agnostic Explanations) and combining them with
very high-end models such as XGBoost and LightGBM, we create interpretable frameworks that enable stakeholders to
understand, trust, and verify the risk classifications issued. Our study uses a mixture of real and synthetic blockchain transaction
datasets with risk labels and benchmarks each model with respect to accuracy and interpretability. Results show that XML models
provide competitive predictive power while also offering actionable explanations useful for detection of anomalies, regulatory
audit, and strategic decision-making. We believe that explainable ML is not just achievable but also an absolute prerequisite for
sustainable and compliant risk management in blockchain financial infrastructures.

Keywords: Blockchain Payment Gateways, Explainable Machine Learning, Risk Assessment, Shap, Lime, Xgboost, Transaction
Monitoring, Defi Security, Anomaly Detection, Model Interpretability.

1. Introduction
1.1. Background and Motivation

Blockchain entered the scene through innovation, allowing decentralized, transparent, and borderless transactions. Among
some of the very important applications of blockchain technology are blockchain payment gateways, which allow-bearing the
merchant and the user to transact in cryptocurrency without a centralized intermediary (Nakamoto, 2008; Pilkington, 2016). These
gateways are essential to keep transaction costs low and increase data immutability and settlement speeds. However, with digital
finance become areas of concern, high-grade fraud attacks become rampant, including Sybil attacks, smart contract exploits,
identity obfuscation, and double-spending (Conti et al., 2018).

Another challenge plaguing real-time fraud detection in addition to the transparent nature of blockchain ledgers is that, unlike
traditional banking systems, blockchain operates largely in a trustless environment, often lacking identity-verification layers such
as KYC (Know Your Customer). Hence, this nature of decentralization calls for adaptive, data-driven risk-mitigation mechanisms
capable of sifting through enormous amounts of transaction data and assessing risks in real time (Chen et al., 2021). Table 1
presents a comparative view of centralized and decentralized payment gateways versus risk management.

1.2. The Role of Machine Learning in Blockchain Risk Detection

In order to meet intelligent fraud detection requirements, machine learning has played a crucial role in blockchain-based
financial platforms. These algorithms can use past transaction data to learn patterns and flag anomalous behaviors such as rapid
microtransactions, abnormal paths of transactions, and high-value transfers to marked addresses (Ryman-Tubb, Krause, & Garn,
2018). For example, supervised models such as XGBoost, LightGBM, and Random Forests are promising in classification-based
scenarios where fraud occurs infrequently (Li, Li, & He, 2020). At the same time, an unsupervised approach of autoencoding
networks and clustering algorithms excels at outlier detection when fewer labeled data are available.

Nevertheless, though these ML models may offer high accuracy in their assessments, they often lack transparency. The so-
called "black-box" nature tends to hurt explainability, and this, by extension, greatly impairs the ability of stakeholders to
understand or trust their decisions; these stakeholders might include regulators, auditors, and developers (Goodman & Flaxman,
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2017). As more-regulated financial services will soon appear, this lack of interpretability becomes a huge hurdle against the
production of Al-powered systems.
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Figure 1: Contrasting payment Gateway features
Source: Compiled from Pilkington (2016); Conti et al. (2018); Chen et al. (2021)

Table 1: Strengths and Weaknesses of ML Models Used in Blockchain Risk Detection

Model Type Strengths Weaknesses " Explainability
Random Forest High accuracy, robust to noise Poor at handling temporal sequence data Medium
XGBoost Excellent for tabular data Black-box nature Medium-Low
Neural Networks Good at learning non-linearities Low interpretability, high complexity Low
Autoencoders Effective for unsupervised learning Require large datasets, hard to tune Low
SHAP / LIME (XAl) High interpretability (post hoc) Computationally expensive in real time High

Source: Adapted from Ribeiro et al. (2016); Lundberg & Lee (2017); Li et al. (2020)

1.3. Need for Explainable Artificial Intelligence

There has been an increase in this field as the need to make machine learning models interpretable without compromising on
efficiency arose. In a blockchain environment, a stakeholder needs to understand why a transaction is flagged as suspicious to
comply with regulations such as GDPR, Basel Ill, and FATF recommendations (Adadi & Berrada, 2018). With methods such as
SHAP (SHapley Additive Explanations) and LIME (Local Interpretable Model-Agnostic Explanations), local and human-
understandable explanations for an algorithm's results are granted irrespective of the type of algorithm in the background
(Lundberg & Lee, 2017; Ribeiro et al., 2016).

Through these mechanisms, organizations can learn why an ML model flagged something as potential fraudulent behavior.
Such knowledge contributes to greater confidence by stakeholders, reduction of false positives, and internal auditing, regulatory
validation, and risk governance processes.

1.4. Research Objectives and Contributions
This article discusses explainable machine learning integration into the risk assessment pipeline of blockchain payment systems.
The specific objectives of this thesis are:
e Todevelop robust ML models for classifying and detecting high-risk blockchain transactions in real time.
To apply and evaluate explainability frameworks (e.g., SHAP and LIME) for interpreting these models.
To study the trade-offs between model performance, transparency, and computational efficiency.
To provide concrete examples of real transaction risk explanations by using interpretable outputs.”
The main contributions are:
an extensive comparison of explainable and non-explainable ML models for blockchain finance;
the practical application of SHAP/LIME on blockchain transaction datasets; and discussion on the implications of
explainable Al for regulatory compliance in decentralized financial environments.
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1.5. Article Structure
The remainder of the paper is structured as follows:

e Section 2 considers the relevant literature on blockchain risk and explainable machine learning.
Section 3 explains the methodology, datasets, and modeling methods.
Section 4 elaborates on the experimental results, interpretability visualizations, and case studies.
Section 5 discusses implications, limitations, and future work.
Section 6 concludes the paper with key takeaways and recommendations.

2. Literature Review
2.1. Risk Assessment in Blockchain Payment Systems

Blockchain payment gateways are meant to help businesses conduct decentralized digital transaction services without an
intermediary. These systems offer many benefits, such as transparency, immutability, and cryptographic security, but they face
special risks that differ from those faced by conventional banking systems: double spending, Sybil attacks, flooding of transactions,
smart contract loopholes, and front-running (Conti, Kumar, Lal, & Ruj, 2018; Aste, Tasca, & Di Matteo, 2017).

Blockchain systems, as opposed to the centralized ones, must operate autonomously without relying on fixed rule-based
approaches and human intervention. Hence, it is imperative to detect risky activity in real-time while being alerted with intelligent
reasoning. On the other hand, due to the decentralized structure and pseudonymous nature of transactions, it very often becomes
nearly impossible to track an identity, reverse a transaction, or find-oriented resolutions for disputes (Chen et al., 2021).With
regard to identifying the differences in risk exposures of blockchain payment gateways, Table 3 summarizes the types of risks that
prominently prey on decentralized payment ecosystems.

ndo Understanding blockchain security risks based on exploitation scope.
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Figure 2: Blackchain Security
Source: Adapted from Conti et al. (2018); Aste et al. (2017); Eskandari et al. (2019)

2.2. Machine Learning Applications in Financial Risk Detection

Currently, ML is very popular in the financial sectors and these days mainly used for fraud detection, AML, transaction
monitoring, and risk classification. In centralized finance, ML is mostly used for credit scoring, anomaly detection, or behavioral
analytics (Ryman-Tubb et al., 2018). These models can identify subtle nonlinear relationships among transaction variables that are
rarely caught by conventional statistical models.

Conversely, in the blockchain systems, ML is used for address classification, bot detection, and transaction clustering (Li et
al., 2020). Supervised models such as logistic regression, support vector machines (SVM), decision trees, and ensemble learners
such as XGBoost and Random Forest are preferred when labeled data is available. When data is unlabeled, one must apply
unsupervised models such as K-means, DBSCAN, or autoencoders to detect abnormal behavior patterns.

163



Krishna Mohan Kadambala / IJAIBDCMS, 5(2), 161-172, 2024

Some of these models bear predictive power, but a loss of interpretability is a vice; it is a major inhibitor to adoption in the
compliance-sensitive setting. Table 4 illustrates some of the common ML models used in blockchain risk detection with their
strength and limitation.

Table 2: Overview of ML Models for Blockchain Transaction Risk Detection

Model Type Use Case Strengths Limitations
Logistic Regression Binary fraud classification Interpretable, simple Limited to linear boundaries
implementation
Random Forest Transaction pattern Robust to noise, handles imbalance Hard to interpret at scale
classification

XGBoost Large-scale fraud prediction High accuracy, fast training Black-box model

Autoencoders Unsupervised anomaly Learns latent features Requires fine-tuning, low

detection clarity

Graph Neural Wallet linkage analysis Good for blockchain topologies Complex, difficult to explain

Networks
Clustering (DBSCAN) Botnet detection No labeling needed Sensitive to distance thresholds

Source: Adapted from Ryman-Tubb et al. (2018); Li et al. (2020); Chen et al. (2021)

2.3. Explainable Al (XAl) in Finance and Security

Increased Al penetration into sensitive sectors such as finance has led investigators to focus more on explainability. Black-box
models are often accurate, but their decisions are hard to interpret and understand, hence fairness, bias, and accountability concerns
arise. This becomes more of an issue when it comes to blockchain-based financial services since these are primarily concerned
with trust and auditability (Goodman and Flaxman, 2017).

Explainable Al methods are undertaken to either render ML models transparent with truly interpretable models or apply post
hoc solution techniques to the already trained models.

Some of the popular methods are:

e SHAP (SHapley Additive Explanations): Explains the contribution of each feature in the prediction of a model, adapting
ideas from cooperative game theory (Lundberg & Lee, 2017).

e LIME (Local Interpretable Model-agnostic Explanations): Constructs locally linear models approximating the behavior of
complex classifiers near a particular prediction (Ribeiro et al., 2016).

e Counterfactual Explanations: Articulate scenarios wherein a different result would be obtained.

e In this emerging landscape of blockchain risk analysis, XAl techniques are only beginning to take hold. With present
research leaning towards accuracy-first paradigms with little concern for interpretability of the decisions themselves, it
opens up an exciting new opportunity for future work.

2.4. Gaps in Existing Research

Machine learning had found its way into blockchain fraud, financial fraud detection, etc., although explainability is still largely
unoperationalized (Doshi-Velez & Kim, 2017). Most view fraud mostly via pure statistic reasoning, i.e., "precision" and "recall",
and do not provide actionable insights. In addition, most relevant blockchain work has been at the network level (transaction
graphs, consensus validation, etc.) and less at the level of fraud classification at payment gateways. Research evaluating this
tradeoff of model explainability to scalability and computational efficiency is also sparse.

This paper fills the above gaps by putting forth a hybrid framework of high-performing ML whose explainability is well-
grounded and palatable to the transaction structure and the threat landscape of blockchain payment gateways.

3. Methodology
3.1. Research Design Overview

This study adopts an experimental research methodology to develop and evaluate an explainable machine learning (XML)
paradigm to risk assessment in blockchain payment gateways. The design performs predictive modeling alongside post hoc
explanation frameworks to assess high-risk blockchain transactions in real time. The processes entail raw dataset preprocessing,
generation of risk labels, training, and interpretability analyses using SHAP and LIME.
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3.2. Data Collection and Description
The prime dataset in this study is a mashup of real blockchain transaction data coming off public ledgers (Ethereum, Binance
Smart Chain) alongside synthetic labeled data with mimicry of fraud behaviors. The dataset consists of 120,000-plus transactions,
including:
e Wallet addresses (sender/receiver)
Transaction timestamps and hashes
Gas fees and transaction values
Contract interaction flags
Transaction frequency and velocity

The fraudulent transactions are tagged manually on the basis of published incident reports, manual smart contract exploit
incident labeling (example - The DAO Hack) with open fraud datasets (Kumar et al., 2020). Table 5 gives a summary of the data
set structure.

Transaction Features
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Receivers wallet
address for the
trznsaction.
Transaction Value

Value of the transaction

in Ether. Gas Price

Gas fee paid for the
trensaction.
Is Contract Call

TX Frequency
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Number of trensactions
made in last 24 hours.

Figure 3: Transaction Features
Source: Generated from hybrid real and synthetic transaction data.

3.3. Risk Labeling and Preprocessing
The dataset had to be cleaned and processed thoroughly before training:
e Null-value imputation was undertaken using the median with respect to each class.
Categorical features (like addresses) were Target-Encoded.
MinMaxScaler was applied for the normalization of numerical features.
Highly correlated features were identified and removed after Pearson correlation to reduce multicollinearity.
SMOTE was applied for oversampling the synthetic fraud class to synthesize the highly imbalanced class distribution
(Chawla et al., 2002).

3.4. Machine Learning Models
The 3 most widely accepted ML models were chosen on the basis of their performance and applicability to post hoc explanation
tools:

e XGBoost (Extreme Gradient Boosting): Known to attain very high accuracy and to be efficient with tabular data (Chen &
Guestrin, 2016).

e LightGBM: A gradient boosting framework that is fast and optimized for large datasets.

e Random Forest: An ensemble learning approach exhibiting good performance and moderate interpretability.

e Each model was run in a 5-fold cross-validation setting, and hyperparameter values were tuned using Random Search with
AUC-ROC Suring metric.

3.5. Explainability: SHAP and LIME Techniques
For adopting model-agnostic interpretation techniques, two methods were used:
e SHAP (SHapley Additive Explanations): Measures each feature's contribution to an instance-specific prediction using
Shapley values from cooperative game theory (Lundberg & Lee, 2017).
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e LIME (Local Interpretable Model-agnostic Explanations): Interpretable surrogate models (e.g., linear regressors)
approximate the behavior of a black-box model near a particular prediction (Ribeiro et al., 2016).

e These two were applied concerning random samples of transactions suspected of high risky nature and those confirmed to
be of low risky nature to generate visual and textual interpretations of the model decisions.

3.6. Evaluation Metrics
The following metrics were used to ascertain the best performing models:

e Accuracy: Measures overall correctness of classification.
Precision, Recall, and F1-Score: For fraud detection.
Area Under Curve-Receiver Operating Characteristic (AUC-ROC): To judge model discrimination ability.
Explanation Fidelity: Degree of agreement between local explanations and original model predictions.
Computation Time: Time the model takes to deliver predictions and explanations.

Table 3: Performance and Interpretability Evaluation Metrics

Metric Name Type Purpose
Accuracy Classification Overall correct classifications
F1-Score Classification Balance between precision and recall
AUC-ROC Classification | Probability of correct ranking of positive samples
SHAP Explanation Time | Interpretability | Time to compute SHAP values per transaction
LIME Fidelity Score Interpretability Local surrogate model accuracy

Source: Derived from standard ML and XAl evaluation guidelines.

3.7. Applicable Toolkits and Implementation
e Programming Language: Python 3.11
ML Libraries: Scikit-learn, XGBoost, LightGBM
XAl Tools: SHAP, LIME
Data Handling: Pandas, NumPy
Visualization: Matplotlib, Seaborn

The runtime environment for this analysis was Google Colab Pro (with 16 GB RAM and a T4 GPU).

4. Results
4.1. Model Performance Overview

Three machine learning models—XGBoost, LightGBM, and Random Forest—were trained on the preprocessed dataset and
evaluated using stratified 5-fold cross-validation scheme. Many common classification metrics were used to grade the
performance.

Top Performing Risk Classification Models

Random Forest XGBoost LightGBM

Random Forest XGBoost excels in LightGBM offers a

provides solid accuracy and AUC-  balance of accuracy
accuracy and AUC- ROC performance. and AUC-ROC
ROC performance. performance.

Figure 4: Top performing Risk Classification Models
Source: Computed using scikit-learn on blockchain transaction dataset.
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XGBoost performed the best overall, with a high AUC-ROC (0.978) and F1-score (0.935), indicating its strong balance
between precision and recall. Random Forest showed competitive results but lagged slightly in recall, making it less effective at
identifying all risky transactions.

4.2. Explainability Analysis Using SHAP and LIME

Regarding the interpretability of the best models, interpretability has been induced by SHAP and LIME on the XGBoost and
LightGBM classifiers. The SHAP method was used for global feature importance and local explanations of individual transactions.
Figure 1 shows the plot for global SHAP feature importance.

4.3. Local Explanation Case Study (Extended Version)

The LIME-based local explanation study was devised for selected blockchain transactions to demonstrate the interpretability
of machine learning decisions at the individual level. This is mainly to understand which features may have predominantly
influenced a model's decision while stating that a transaction is high-risk as compared to low-risk, hence the essence of explainable
Al offering human-understandable reasons behind an algorithm's decision (Ribeiro et al., 2016).

Case 1: High-Risk Transaction

For a transaction of 4.7 ETH considered high risk by the XGBoost classifier, the LIME method generated a local surrogate model
explaining the output. The most predominant features included:

Transaction value: High value transfers are exposed to theft and laundering.

e Transaction frequency in the last 24 hours: Suspected bot or anomalous behavior.

e  Gas price: Usually manipulated in cases of MEV or front-running behaviors.

e  Smart contract interaction: Suggests non-trivial execution logic, which is common in phishing or malicious contract cases.

They were correlated positively with the risk prediction by the model. The LIME explanation fidelity (R was 0.91, meaning
the linear surrogate agreed well with the original model logic.

Case 2: Low-Risk Transaction

On the other hand, a nice safe low-risk transaction of 0.03 ETH gave contradictory weights to the features that promoted risk
score classification. Low transaction frequency and low volume contributed the most to the confidence with which the classifier
presumed the transaction was safe.

Table 4. Comparison of LIME Explanations for High-Risk vs. Low-Risk Transactions

Feature High-Risk Tx Value | High-Risk Weight | Low-Risk Tx Value | Low-Risk Weight
transaction_value 4.7ETH +0.32 0.03ETH -0.21
tx_frequency window 21 +0.28 2 -0.17
gas_price 72 Gwei +0.11 24 Gwei -0.09
is_contract_call True +0.09 False -0.05
risk_history score 0.6 +0.06 0.1 -0.03
Total Risk Weight — +0.86 — -0.55

Source: LIME local explanation results on XGBoost model outputs.

A side-by-side analysis, as presented in Table 10, truly emphasizes the discriminative powers of the model: transactions
involving high-frequency, high-value amounts involving smart contracts are flagged as suspicious; however, low-volume, low-
frequency transactions devoid of any complex interactions are considered low-risk. This level of detail fortifies the trust and
usability of the model in an operating environment wherein analysts and compliance boards could confidently take action on model
decisions.

Such explainability is important during regulatory audits, when the reasoning behind flagging each transaction must be made
known, particularly in light of the EU's General Data Protection Regulation (GDPR) and the Financial Action Task Force (FATF)
recommendations (Goodman & Flaxman, 2017).

5. Discussion
5.1. Practical Implications of Blockchain Payment Gateway

The combination of explainable machine learning (XML) with blockchain payment gateways will certainly stand to benefit
real-time risk assessment, operational transparency, and compliance alignment. While strong in predictive power, conventional
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black box models do not have the interpretability for high-stake financial systems (Doshi-Velez & Kim, 2017). As has been shown
through SHAP and LIME, XML designs build trust between model outputs and stakeholders on the human side that enrich
decision-making among fraud detection teams, regulatory auditors, and developers themselves.

Explainable outputs would help compliance officers understand why a certain transaction was flagged, while this very
understanding forms the core of the compliance requirement under GDPR, FATF, and PCI-DSS (Goodman & Flaxman, 2017). For
example, when a transaction is flagged with clear attribution to gas price surges or smart contract behavior, that transaction can be
passed onto the forensics team for deeper investigation.

In production, such explanations could be surfaced and visualized in dashboards that highlight risk scores and contributing
factors to enable tiered review and prioritization of high-risk cases.

5.2. Strategic Advantages for Financial Institutions and Regulators
As discussed in the previous section, integration of XAl with blockchain payment infrastructure might translate to long-term
benefits:

Regulatory Compliance: Justifiable decisions aid in meeting legal standards on algorithmic transparency.
Fraud Reduction: Faster identification and intervention reduce financial losses.

Auditability: Local explanations provide paper trails for internal and external audits.

Stakeholder Trust: Transparency enhances user and partner confidence in the system.

Understanding Explainable Al's Impact on Blockchain Application
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Cross-Border Smart
AML Contracts

Aids compliance Enhances smart
with transaction contract security
Obscure insights verification Transparent

% | @& %s|le| @

Fraud DeFi Loans Regulatory

Detection Supports Reporting
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Figure 5: Blockchain Application Transparency
Source: Adapted from Adadi & Berrada (2018); Ribeiro et al. (2016); Lundberg & Lee (2017)

5.3. Model Trade-Offs: Accuracy versus Interpretability

One of the insights to be gained from this work is the intrinsic trade-off between model complexity and explainability.
However advanced fraud detection might be with models such as XGBoost and LightGBM, its decision boundaries are very often
complicated and unintuitive. From an explanatory standpoint, tools such as SHAP and LIME do lay bare those boundaries but only
with extra computational effort that might increase exponentially when levels of transaction volume are considered (Lundberg &
Lee, 2017).

For an operational system of transactions numbering thousands each second (say, a high-frequency crypto exchange),
generating explanations for the accused alone may be entertained or perhaps implementing some form of caching for patterns being
seen repeatedly. Alternatively, hybrid models can be considered, wherein interpretable models simpler in nature handle all the
small-value transactions and complex models for the riskier ones.

5.4. Limitations
Yet, several limitations must be admitted in spite of its strengths:
o Datasets: While modeling allowed for a synthetic fraud dataset, in real scenarios, often noise and privacy constraints are
present, along with missing labels.
e Computation Time: It would, for sure, be impossible to keep giving SHAP and LIME explanations in real-time for every
single transaction fed into a high-throughput system.
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e  Generalizability: The current models have been trained on preparations of Ethereum and BSC-like transactions. Should
one desire to port to other blockchains (say Solana, Algorand), there is likely going to be some amount of adaptation
needed.

e Regulatory Ambiguity: Different jurisdictions have varying interpretations regarding "explainability,” and some
regulations are still evolving.

5.5. Extended Limitations and Ethical Considerations
Beyond what has been previously described, this section unpacks more profound ethical and infrastructural issues surrounding
the implementation of explainable Al in a blockchain payment system.

A particular ethical issue concerns explanation bias when the training data is incorrectly labeled or inadvertently carries traces
of past discrimination. For example, if a model is trained to believe that a certain cluster of wallet addresses, perhaps associated
with a particular region, is usually high-risk because, in the past, persons in that cluster were involved in fraudulent activities, it
will perpetuate such a bias even when no actual risk exists. Algorithmic bias is especially dangerous in DeFi, where pseudonymity
protects identity but conceals network behavior (Mehrabi et al., 2021).

Another crucial issue of concern is due to over-trusting an explanation output. SHAP and LIME outputs might look appealing
visually, but those are not necessarily explanations of what the black-box model is actually doing, at least for edge cases. A user
might over-trust these simplified local approximations to give a false sense of surety about the trustworthiness of a model
(Lakkaraju et al., 2022).

From an operations point of view, infrastructure scalability is still the biggest challenge. While a batch processing scheme
could work for explaining outputs periodically during some sort of analysis, supporting real-time explanation generation for
millions of microtransactions on high-speed networks like Solana or Avalanche will be considerably harder. Without being
optimized for speed, explanation engines would become the bottleneck to fraud prevention systems.

5.6. Additional Expanded Future Work and Research Directions

More areas are emerging where future work can be considered, based on the proposed roadmap: Explanation-as-a-Service
(XaaS): Research could be devoted to APIs or to blockchain oracles that provide explanations separately from the prediction layer,
enabling the system on the client's side to be kept lightweight so that interpretability results can be fetched only if necessary.

Explainable Smart Contracts: Logics could be embedded into smart contracts that enforce risk rules while simultaneously
logging why a certain decision has been made (e.g., "exceeded transaction threshold within 6 hours"), which would allow for on-
chain explanation.

Explainable Zero-Knowledge Proofs (X-ZKPs): Creating explanations under the paradigm of privacy-preservation is a novel
yet critical area. X-ZKPs might allow a regulator to be convinced of the validity of logic without disclosing sensitive transaction
details. Human-in-the-Loop Interfaces: Visual analytic platforms where human analysts can interact with and influence an
explanation would increase applicability and interpretability in dynamic risk settings.

Table 5: Challenges and Opportunities for Explainable ML in Blockchain Payment Risk Systems

Challenge Description Proposed Solution
High computational cost of Slows real-time risk detection pipelines Explanation caching, sampling-based XAl
SHAP/LIME
Risk of algorithmic bias Certain wallet behaviors unfairly flagged Bias mitigation and fairness-aware modeling
Lack of explanation fidelity Local surrogate models may oversimplify Explanation verification with model
logic agreement scores
Difficulty in multi-chain portability | Models trained on one blockchain may not Cross-chain model training and feature
generalize abstraction
Compliance gaps in different Unclear legal definitions of "explainability" | Co-design with regulators and legal scholars
jurisdictions
Limited interpretability in smart Contract logic is opaque to non-experts On-chain explainability metadata and rule
contracts logs

Source: Compiled from Goodman & Flaxman (2017); Ribeiro et al. (2016); Mehrabi et al. (2021); Lakkaraju et al. (2022).
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This discussion makes it extendedBefore while explainable ML models stand as a bright promise for blockchain-oriented risk
management, deployment in practice has to juggle technical viability, ethical integrity, and regulatory acceptance. Such systems
had better be perpetually engineered, looking into newer fraud patterns, technological changes in the blockchain arena, and
variations in legal interpretation concerning transparency and accountability.

6. Conclusion

The incorporation of blockchain technology in digital payment systems has transformed financial transaction landscapes via
decentralized, transparent, and efficient fund transfers. New and evolving risk phenomena, including double-spending, Sybil
attacks, and complex contract-related exploits, now challenge the very systems that were built to counteract traditional fraud.
Hence, this study proposed a hybrid approach that fuses machine learning's predictive powers with interpretable explainable Al
(XAI) frameworks.

By employing established classifiers like XGBoost, LightGBM, and Random Forest on real and synthetic blockchain
transaction datasets, we showed how machine learning models could detect high-risk financial behaviors with great accuracy. Even
more important were the applications of SHAP and LIME to interpret these predictions in a transparent manner, thus bridging the
gap between black-box decision-making and regulatory, user-trust, and operational needs.

The results indicated that explainable ML models produced effective justifications for risky transactions by highlighting
essential factors such as transaction value, gas price anomalies, and frequency bursts. These visual and tabular explanations were
beneficial in fostering a better understanding among stakeholders and providing a basis for the creation of intervention measures
that are proactive and can be held accountable.

However, it appeared that within the study, accuracy and interpretation faced trade-offs with one another, while considerations
of computational scalability, explanation fidelity, and cross-chain generalizability all exhibited some limitations. This serves as a
reminder for more research to be directed towards building efficient, scalable, and regulation-compatible XAl solutions for
blockchain networks.

In conclusion, explainable machine learning has to be the much-needed advancement in the risk assessment of blockchain
payment portals. In making Al decisions transparent and justifiable, XAl would improve operational efficiency while being a basis
to create responsible, ethical, and regulation-ready philosophies for decentralized finance.
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