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Abstract: Emerging blockchain payment gateways have facilitated worldwide financial systems with unprecedented efficiency, 

transparency, and decentralization. Yet, increasingly, such platforms become susceptible to complex financial risks such as fraud at 

various scales, double-spending, Sybil attacks, and illegal access. The rule-based approaches that were traditionally implemented 

are no longer adequate to keep up with the evolving threat landscape of decentralized finance (DeFi). This, therefore, serves to 

strengthen the stance for considering ML models for at least real-time transaction analysis and fraud detection. Even with many 

models offering good prediction capabilities, the lack of transparency raises serious concerns about issues of interpretability and 
compliance—especially in environments that are financially regulated. The paper thus delves into the incorporation of explainable 

machine learning (XML) techniques in blockchain payment risk assessment frameworks. Using model-agnostic tools such as 

SHAP (SHapley Additive Explanations) and LIME (Local Interpretable Model-Agnostic Explanations) and combining them with 

very high-end models such as XGBoost and LightGBM, we create interpretable frameworks that enable stakeholders to 

understand, trust, and verify the risk classifications issued. Our study uses a mixture of real and synthetic blockchain transaction 

datasets with risk labels and benchmarks each model with respect to accuracy and interpretability. Results show that XML models 

provide competitive predictive power while also offering actionable explanations useful for detection of anomalies, regulatory 

audit, and strategic decision-making. We believe that explainable ML is not just achievable but also an absolute prerequisite for 

sustainable and compliant risk management in blockchain financial infrastructures. 

 

Keywords: Blockchain Payment Gateways, Explainable Machine Learning, Risk Assessment, Shap, Lime, Xgboost, Transaction 

Monitoring, Defi Security, Anomaly Detection, Model Interpretability. 
 

1. Introduction 
1.1. Background and Motivation 

Blockchain entered the scene through innovation, allowing decentralized, transparent, and borderless transactions. Among 

some of the very important applications of blockchain technology are blockchain payment gateways, which allow-bearing the 

merchant and the user to transact in cryptocurrency without a centralized intermediary (Nakamoto, 2008; Pilkington, 2016). These 
gateways are essential to keep transaction costs low and increase data immutability and settlement speeds. However, with digital 

finance become areas of concern, high-grade fraud attacks become rampant, including Sybil attacks, smart contract exploits, 

identity obfuscation, and double-spending (Conti et al., 2018). 

 

Another challenge plaguing real-time fraud detection in addition to the transparent nature of blockchain ledgers is that, unlike 

traditional banking systems, blockchain operates largely in a trustless environment, often lacking identity-verification layers such 

as KYC (Know Your Customer). Hence, this nature of decentralization calls for adaptive, data-driven risk-mitigation mechanisms 

capable of sifting through enormous amounts of transaction data and assessing risks in real time (Chen et al., 2021). Table 1 

presents a comparative view of centralized and decentralized payment gateways versus risk management. 

 

1.2. The Role of Machine Learning in Blockchain Risk Detection 

In order to meet intelligent fraud detection requirements, machine learning has played a crucial role in blockchain-based 
financial platforms. These algorithms can use past transaction data to learn patterns and flag anomalous behaviors such as rapid 

microtransactions, abnormal paths of transactions, and high-value transfers to marked addresses (Ryman-Tubb, Krause, & Garn, 

2018). For example, supervised models such as XGBoost, LightGBM, and Random Forests are promising in classification-based 

scenarios where fraud occurs infrequently (Li, Li, & He, 2020). At the same time, an unsupervised approach of autoencoding 

networks and clustering algorithms excels at outlier detection when fewer labeled data are available. 

 

Nevertheless, though these ML models may offer high accuracy in their assessments, they often lack transparency. The so-

called "black-box" nature tends to hurt explainability, and this, by extension, greatly impairs the ability of stakeholders to 

understand or trust their decisions; these stakeholders might include regulators, auditors, and developers (Goodman & Flaxman, 
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2017). As more-regulated financial services will soon appear, this lack of interpretability becomes a huge hurdle against the 

production of AI-powered systems. 

 

 
Figure 1: Contrasting payment Gateway features 

Source: Compiled from Pilkington (2016); Conti et al. (2018); Chen et al. (2021) 

 

Table 1: Strengths and Weaknesses of ML Models Used in Blockchain Risk Detection 

Model Type Strengths Weaknesses Explainability 

Random Forest High accuracy, robust to noise Poor at handling temporal sequence data Medium 

XGBoost Excellent for tabular data Black-box nature Medium-Low 

Neural Networks Good at learning non-linearities Low interpretability, high complexity Low 

Autoencoders Effective for unsupervised learning Require large datasets, hard to tune Low 

SHAP / LIME (XAI) High interpretability (post hoc) Computationally expensive in real time High 

Source: Adapted from Ribeiro et al. (2016); Lundberg & Lee (2017); Li et al. (2020) 

 

1.3. Need for Explainable Artificial Intelligence  
There has been an increase in this field as the need to make machine learning models interpretable without compromising on 

efficiency arose. In a blockchain environment, a stakeholder needs to understand why a transaction is flagged as suspicious to 

comply with regulations such as GDPR, Basel III, and FATF recommendations (Adadi & Berrada, 2018). With methods such as 

SHAP (SHapley Additive Explanations) and LIME (Local Interpretable Model-Agnostic Explanations), local and human-

understandable explanations for an algorithm's results are granted irrespective of the type of algorithm in the background 

(Lundberg & Lee, 2017; Ribeiro et al., 2016). 

 

Through these mechanisms, organizations can learn why an ML model flagged something as potential fraudulent behavior. 

Such knowledge contributes to greater confidence by stakeholders, reduction of false positives, and internal auditing, regulatory 

validation, and risk governance processes. 

 

1.4. Research Objectives and Contributions 

This article discusses explainable machine learning integration into the risk assessment pipeline of blockchain payment systems. 

The specific objectives of this thesis are: 

 To develop robust ML models for classifying and detecting high-risk blockchain transactions in real time.  

 To apply and evaluate explainability frameworks (e.g., SHAP and LIME) for interpreting these models. 

 To study the trade-offs between model performance, transparency, and computational efficiency. 

 To provide concrete examples of real transaction risk explanations by using interpretable outputs." 

 The main contributions are:  

 an extensive comparison of explainable and non-explainable ML models for blockchain finance;  

 the practical application of SHAP/LIME on blockchain transaction datasets; and  discussion on the implications of 

explainable AI for regulatory compliance in decentralized financial environments. 
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1.5. Article Structure 

The remainder of the paper is structured as follows: 

 Section 2 considers the relevant literature on blockchain risk and explainable machine learning. 

 Section 3 explains the methodology, datasets, and modeling methods. 

 Section 4 elaborates on the experimental results, interpretability visualizations, and case studies. 

 Section 5 discusses implications, limitations, and future work. 

 Section 6 concludes the paper with key takeaways and recommendations. 

 

2. Literature Review 
2.1. Risk Assessment in Blockchain Payment Systems 

Blockchain payment gateways are meant to help businesses conduct decentralized digital transaction services without an 

intermediary. These systems offer many benefits, such as transparency, immutability, and cryptographic security, but they face 
special risks that differ from those faced by conventional banking systems: double spending, Sybil attacks, flooding of transactions, 

smart contract loopholes, and front-running (Conti, Kumar, Lal, & Ruj, 2018; Aste, Tasca, & Di Matteo, 2017). 

 

Blockchain systems, as opposed to the centralized ones, must operate autonomously without relying on fixed rule-based 

approaches and human intervention. Hence, it is imperative to detect risky activity in real-time while being alerted with intelligent 

reasoning. On the other hand, due to the decentralized structure and pseudonymous nature of transactions, it very often becomes 

nearly impossible to track an identity, reverse a transaction, or find-oriented resolutions for disputes (Chen et al., 2021).With 

regard to identifying the differences in risk exposures of blockchain payment gateways, Table 3 summarizes the types of risks that 

prominently prey on decentralized payment ecosystems. 

 

 
Figure 2: Blackchain Security 

Source: Adapted from Conti et al. (2018); Aste et al. (2017); Eskandari et al. (2019) 

 

2.2. Machine Learning Applications in Financial Risk Detection 

Currently, ML is very popular in the financial sectors and these days mainly used for fraud detection, AML, transaction 

monitoring, and risk classification. In centralized finance, ML is mostly used for credit scoring, anomaly detection, or behavioral 

analytics (Ryman-Tubb et al., 2018). These models can identify subtle nonlinear relationships among transaction variables that are 
rarely caught by conventional statistical models. 

 

Conversely, in the blockchain systems, ML is used for address classification, bot detection, and transaction clustering (Li et 

al., 2020). Supervised models such as logistic regression, support vector machines (SVM), decision trees, and ensemble learners 

such as XGBoost and Random Forest are preferred when labeled data is available. When data is unlabeled, one must apply 

unsupervised models such as K-means, DBSCAN, or autoencoders to detect abnormal behavior patterns. 
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Some of these models bear predictive power, but a loss of interpretability is a vice; it is a major inhibitor to adoption in the 

compliance-sensitive setting. Table 4 illustrates some of the common ML models used in blockchain risk detection with their 

strength and limitation. 

 

Table 2: Overview of ML Models for Blockchain Transaction Risk Detection 

Model Type Use Case Strengths Limitations 

Logistic Regression Binary fraud classification Interpretable, simple 

implementation 

Limited to linear boundaries 

Random Forest Transaction pattern 

classification 

Robust to noise, handles imbalance Hard to interpret at scale 

XGBoost Large-scale fraud prediction High accuracy, fast training Black-box model 

Autoencoders Unsupervised anomaly 

detection 

Learns latent features Requires fine-tuning, low 

clarity 

Graph Neural 

Networks 

Wallet linkage analysis Good for blockchain topologies Complex, difficult to explain 

Clustering (DBSCAN) Botnet detection No labeling needed Sensitive to distance thresholds 

Source: Adapted from Ryman-Tubb et al. (2018); Li et al. (2020); Chen et al. (2021) 

 

2.3. Explainable AI (XAI) in Finance and Security 

Increased AI penetration into sensitive sectors such as finance has led investigators to focus more on explainability. Black-box 

models are often accurate, but their decisions are hard to interpret and understand, hence fairness, bias, and accountability concerns 

arise. This becomes more of an issue when it comes to blockchain-based financial services since these are primarily concerned 

with trust and auditability (Goodman and Flaxman, 2017). 

 
Explainable AI methods are undertaken to either render ML models transparent with truly interpretable models or apply post 

hoc solution techniques to the already trained models.  

 

Some of the popular methods are: 

 SHAP (SHapley Additive Explanations): Explains the contribution of each feature in the prediction of a model, adapting 

ideas from cooperative game theory (Lundberg & Lee, 2017). 

 LIME (Local Interpretable Model-agnostic Explanations): Constructs locally linear models approximating the behavior of 

complex classifiers near a particular prediction (Ribeiro et al., 2016). 

 Counterfactual Explanations: Articulate scenarios wherein a different result would be obtained. 

 In this emerging landscape of blockchain risk analysis, XAI techniques are only beginning to take hold. With present 

research leaning towards accuracy-first paradigms with little concern for interpretability of the decisions themselves, it 
opens up an exciting new opportunity for future work. 

 

2.4. Gaps in Existing Research 

Machine learning had found its way into blockchain fraud, financial fraud detection, etc., although explainability is still largely 

unoperationalized (Doshi-Velez & Kim, 2017). Most view fraud mostly via pure statistic reasoning, i.e., "precision" and "recall", 

and do not provide actionable insights. In addition, most relevant blockchain work has been at the network level (transaction 

graphs, consensus validation, etc.) and less at the level of fraud classification at payment gateways. Research evaluating this 

tradeoff of model explainability to scalability and computational efficiency is also sparse. 

 

This paper fills the above gaps by putting forth a hybrid framework of high-performing ML whose explainability is well-

grounded and palatable to the transaction structure and the threat landscape of blockchain payment gateways. 

 

3. Methodology 
3.1. Research Design Overview 

This study adopts an experimental research methodology to develop and evaluate an explainable machine learning (XML) 

paradigm to risk assessment in blockchain payment gateways. The design performs predictive modeling alongside post hoc 

explanation frameworks to assess high-risk blockchain transactions in real time. The processes entail raw dataset preprocessing, 

generation of risk labels, training, and interpretability analyses using SHAP and LIME. 
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3.2. Data Collection and Description 

The prime dataset in this study is a mashup of real blockchain transaction data coming off public ledgers (Ethereum, Binance 

Smart Chain) alongside synthetic labeled data with mimicry of fraud behaviors. The dataset consists of 120,000-plus transactions, 

including: 

 Wallet addresses (sender/receiver) 

 Transaction timestamps and hashes 

 Gas fees and transaction values 

 Contract interaction flags 

 Transaction frequency and velocity 

 

The fraudulent transactions are tagged manually on the basis of published incident reports, manual smart contract exploit 

incident labeling (example - The DAO Hack) with open fraud datasets (Kumar et al., 2020). Table 5 gives a summary of the data 

set structure. 

 

 
Figure 3: Transaction Features 

Source: Generated from hybrid real and synthetic transaction data. 

 

3.3. Risk Labeling and Preprocessing 

The dataset had to be cleaned and processed thoroughly before training: 

 Null-value imputation was undertaken using the median with respect to each class. 

 Categorical features (like addresses) were Target-Encoded.  

 MinMaxScaler was applied for the normalization of numerical features. 

 Highly correlated features were identified and removed after Pearson correlation to reduce multicollinearity. 

 SMOTE was applied for oversampling the synthetic fraud class to synthesize the highly imbalanced class distribution 

(Chawla et al., 2002). 

 

3.4. Machine Learning Models 

The 3 most widely accepted ML models were chosen on the basis of their performance and applicability to post hoc explanation 
tools: 

 XGBoost (Extreme Gradient Boosting): Known to attain very high accuracy and to be efficient with tabular data (Chen & 

Guestrin, 2016). 

 LightGBM: A gradient boosting framework that is fast and optimized for large datasets. 

 Random Forest: An ensemble learning approach exhibiting good performance and moderate interpretability.  

 Each model was run in a 5-fold cross-validation setting, and hyperparameter values were tuned using Random Search with 

AUC-ROC Suring metric. 

 

3.5. Explainability: SHAP and LIME Techniques 

For adopting model-agnostic interpretation techniques, two methods were used: 

 SHAP (SHapley Additive Explanations): Measures each feature's contribution to an instance-specific prediction using 
Shapley values from cooperative game theory (Lundberg & Lee, 2017). 
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 LIME (Local Interpretable Model-agnostic Explanations): Interpretable surrogate models (e.g., linear regressors) 

approximate the behavior of a black-box model near a particular prediction (Ribeiro et al., 2016). 

 These two were applied concerning random samples of transactions suspected of high risky nature and those confirmed to 

be of low risky nature to generate visual and textual interpretations of the model decisions. 

 

3.6. Evaluation Metrics 
The following metrics were used to ascertain the best performing models: 

 Accuracy: Measures overall correctness of classification. 

 Precision, Recall, and F1-Score: For fraud detection. 

 Area Under Curve-Receiver Operating Characteristic (AUC-ROC): To judge model discrimination ability. 

 Explanation Fidelity: Degree of agreement between local explanations and original model predictions. 

 Computation Time: Time the model takes to deliver predictions and explanations. 

 

Table 3: Performance and Interpretability Evaluation Metrics 

Metric Name Type Purpose 

Accuracy Classification Overall correct classifications 

F1-Score Classification Balance between precision and recall 

AUC-ROC Classification Probability of correct ranking of positive samples 

SHAP Explanation Time Interpretability Time to compute SHAP values per transaction 

LIME Fidelity Score Interpretability Local surrogate model accuracy 

Source: Derived from standard ML and XAI evaluation guidelines. 

 

3.7. Applicable Toolkits and Implementation 

 Programming Language: Python 3.11 

 ML Libraries: Scikit-learn, XGBoost, LightGBM 

 XAI Tools: SHAP, LIME 

 Data Handling: Pandas, NumPy 

 Visualization: Matplotlib, Seaborn 

 

The runtime environment for this analysis was Google Colab Pro (with 16 GB RAM and a T4 GPU). 

 

4. Results 
4.1. Model Performance Overview 

Three machine learning models—XGBoost, LightGBM, and Random Forest—were trained on the preprocessed dataset and 

evaluated using stratified 5-fold cross-validation scheme. Many common classification metrics were used to grade the 

performance.      

 

 
Figure 4:  Top performing Risk Classification Models 

Source: Computed using scikit-learn on blockchain transaction dataset. 
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XGBoost performed the best overall, with a high AUC-ROC (0.978) and F1-score (0.935), indicating its strong balance 

between precision and recall. Random Forest showed competitive results but lagged slightly in recall, making it less effective at 

identifying all risky transactions. 

 

4.2. Explainability Analysis Using SHAP and LIME 

Regarding the interpretability of the best models, interpretability has been induced by SHAP and LIME on the XGBoost and 
LightGBM classifiers. The SHAP method was used for global feature importance and local explanations of individual transactions. 

Figure 1 shows the plot for global SHAP feature importance. 

 

4.3. Local Explanation Case Study (Extended Version) 

The LIME-based local explanation study was devised for selected blockchain transactions to demonstrate the interpretability 

of machine learning decisions at the individual level. This is mainly to understand which features may have predominantly 

influenced a model's decision while stating that a transaction is high-risk as compared to low-risk, hence the essence of explainable 

AI: offering human-understandable reasons behind an algorithm's decision (Ribeiro et al., 2016). 

 

Case 1: High-Risk Transaction 

For a transaction of 4.7 ETH considered high risk by the XGBoost classifier, the LIME method generated a local surrogate model 

explaining the output. The most predominant features included: 

 Transaction value: High value transfers are exposed to theft and laundering. 

 Transaction frequency in the last 24 hours: Suspected bot or anomalous behavior. 

 Gas price: Usually manipulated in cases of MEV or front-running behaviors. 

 Smart contract interaction: Suggests non-trivial execution logic, which is common in phishing or malicious contract cases. 

 

They were correlated positively with the risk prediction by the model. The LIME explanation fidelity (R²) was 0.91, meaning 

the linear surrogate agreed well with  the original model logic.  

 

Case 2: Low-Risk Transaction  

On the other hand, a nice safe low-risk transaction of 0.03 ETH gave contradictory weights to the features that promoted risk 

score classification. Low transaction frequency and low volume contributed the most to the confidence with which the classifier 
presumed the transaction was safe. 

 

Table 4: Comparison of LIME Explanations for High-Risk vs. Low-Risk Transactions 

Feature High-Risk Tx Value High-Risk Weight Low-Risk Tx Value Low-Risk Weight 

transaction_value 4.7 ETH +0.32 0.03 ETH -0.21 

tx_frequency_window 21 +0.28 2 -0.17 

gas_price 72 Gwei +0.11 24 Gwei -0.09 

is_contract_call True +0.09 False -0.05 

risk_history_score 0.6 +0.06 0.1 -0.03 

Total Risk Weight — +0.86 — -0.55 

Source: LIME local explanation results on XGBoost model outputs. 

 

A side-by-side analysis, as presented in Table 10, truly emphasizes the discriminative powers of the model: transactions 

involving high-frequency, high-value amounts involving smart contracts are flagged as suspicious; however, low-volume, low-

frequency transactions devoid of any complex interactions are considered low-risk. This level of detail fortifies the trust and 

usability of the model in an operating environment wherein analysts and compliance boards could confidently take action on model 

decisions. 

 

Such explainability is important during regulatory audits, when the reasoning behind flagging each transaction must be made 
known, particularly in light of the EU's General Data Protection Regulation (GDPR) and the Financial Action Task Force (FATF) 

recommendations (Goodman & Flaxman, 2017). 

 

5. Discussion  
5.1. Practical Implications of Blockchain Payment Gateway 

The combination of explainable machine learning (XML) with blockchain payment gateways will certainly stand to benefit 
real-time risk assessment, operational transparency, and compliance alignment. While strong in predictive power, conventional 
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black box models do not have the interpretability for high-stake financial systems (Doshi-Velez & Kim, 2017). As has been shown 

through SHAP and LIME, XML designs build trust between model outputs and stakeholders on the human side that enrich 

decision-making among fraud detection teams, regulatory auditors, and developers themselves. 

 

Explainable outputs would help compliance officers understand why a certain transaction was flagged, while this very 

understanding forms the core of the compliance requirement under GDPR, FATF, and PCI-DSS (Goodman & Flaxman, 2017). For 
example, when a transaction is flagged with clear attribution to gas price surges or smart contract behavior, that transaction can be 

passed onto the forensics team for deeper investigation. 

In production, such explanations could be surfaced and visualized in dashboards that highlight risk scores and contributing 

factors to enable tiered review and prioritization of high-risk cases.  

 

5.2. Strategic Advantages for Financial Institutions and Regulators 

As discussed in the previous section, integration of XAI with blockchain payment infrastructure might translate to long-term 

benefits: 

 Regulatory Compliance: Justifiable decisions aid in meeting legal standards on algorithmic transparency. 

 Fraud Reduction: Faster identification and intervention reduce financial losses. 

 Auditability: Local explanations provide paper trails for internal and external audits. 

 Stakeholder Trust: Transparency enhances user and partner confidence in the system. 

 

 
Figure 5: Blockchain Application Transparency 

Source: Adapted from Adadi & Berrada (2018); Ribeiro et al. (2016); Lundberg & Lee (2017) 

 

5.3. Model Trade-Offs: Accuracy versus Interpretability 

One of the insights to be gained from this work is the intrinsic trade-off between model complexity and explainability. 

However advanced fraud detection might be with models such as XGBoost and LightGBM, its decision boundaries are very often 

complicated and unintuitive. From an explanatory standpoint, tools such as SHAP and LIME do lay bare those boundaries but only 

with extra computational effort that might increase exponentially when levels of transaction volume are considered (Lundberg & 

Lee, 2017). 

 

For an operational system of transactions numbering thousands each second (say, a high-frequency crypto exchange), 

generating explanations for the accused alone may be entertained or perhaps implementing some form of caching for patterns being 

seen repeatedly. Alternatively, hybrid models can be considered, wherein interpretable models simpler in nature handle all the 

small-value transactions and complex models for the riskier ones. 

 

5.4. Limitations 

Yet, several limitations must be admitted in spite of its strengths: 

 Datasets: While modeling allowed for a synthetic fraud dataset, in real scenarios, often noise and privacy constraints are 

present, along with missing labels. 

 Computation Time: It would, for sure, be impossible to keep giving SHAP and LIME explanations in real-time for every 

single transaction fed into a high-throughput system. 
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 Generalizability: The current models have been trained on preparations of Ethereum and BSC-like transactions. Should 

one desire to port to other blockchains (say Solana, Algorand), there is likely going to be some amount of adaptation 

needed. 

 Regulatory Ambiguity: Different jurisdictions have varying interpretations regarding "explainability," and some 

regulations are still evolving. 

 

5.5. Extended Limitations and Ethical Considerations 

Beyond what has been previously described, this section unpacks more profound ethical and infrastructural issues surrounding 

the implementation of explainable AI in a blockchain payment system. 

 

A particular ethical issue concerns explanation bias when the training data is incorrectly labeled or inadvertently carries traces 

of past discrimination. For example, if a model is trained to believe that a certain cluster of wallet addresses, perhaps associated 

with a particular region, is usually high-risk because, in the past, persons in that cluster were involved in fraudulent activities, it 

will perpetuate such a bias even when no actual risk exists. Algorithmic bias is especially dangerous in DeFi, where pseudonymity 

protects identity but conceals network behavior (Mehrabi et al., 2021). 

 

Another crucial issue of concern is due to over-trusting an explanation output. SHAP and LIME outputs might look appealing 
visually, but those are not necessarily explanations of what the black-box model is actually doing, at least for edge cases. A user 

might over-trust these simplified local approximations to give a false sense of surety about the trustworthiness of a model 

(Lakkaraju et al., 2022). 

 

From an operations point of view, infrastructure scalability is still the biggest challenge. While a batch processing scheme 

could work for explaining outputs periodically during some sort of analysis, supporting real-time explanation generation for 

millions of microtransactions on high-speed networks like Solana or Avalanche will be considerably harder. Without being 

optimized for speed, explanation engines would become the bottleneck to fraud prevention systems. 

 

5.6. Additional Expanded Future Work and Research Directions  

More areas are emerging where future work can be considered, based on the proposed roadmap: Explanation-as-a-Service 

(XaaS): Research could be devoted to APIs or to blockchain oracles that provide explanations separately from the prediction layer, 
enabling the system on the client's side to be kept lightweight so that interpretability results can be fetched only if necessary. 

 

Explainable Smart Contracts: Logics could be embedded into smart contracts that enforce risk rules while simultaneously 

logging why a certain decision has been made (e.g., "exceeded transaction threshold within 6 hours"), which would allow for on-

chain explanation. 

 

Explainable Zero-Knowledge Proofs (X-ZKPs): Creating explanations under the paradigm of privacy-preservation is a novel 

yet critical area. X-ZKPs might allow a regulator to be convinced of the validity of logic without disclosing sensitive transaction 

details. Human-in-the-Loop Interfaces: Visual analytic platforms where human analysts can interact with and influence an 

explanation would increase applicability and interpretability in dynamic risk settings. 

 

Table 5: Challenges and Opportunities for Explainable ML in Blockchain Payment Risk Systems 

Challenge Description Proposed Solution 

High computational cost of 

SHAP/LIME 

Slows real-time risk detection pipelines Explanation caching, sampling-based XAI 

Risk of algorithmic bias Certain wallet behaviors unfairly flagged Bias mitigation and fairness-aware modeling 

Lack of explanation fidelity Local surrogate models may oversimplify 

logic 

Explanation verification with model 

agreement scores 

Difficulty in multi-chain portability Models trained on one blockchain may not 

generalize 

Cross-chain model training and feature 

abstraction 

Compliance gaps in different 

jurisdictions 

Unclear legal definitions of "explainability" Co-design with regulators and legal scholars 

Limited interpretability in smart 

contracts 

Contract logic is opaque to non-experts On-chain explainability metadata and rule 

logs 

Source: Compiled from Goodman & Flaxman (2017); Ribeiro et al. (2016); Mehrabi et al. (2021); Lakkaraju et al. (2022). 
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This discussion makes it extendedBefore while explainable ML models stand as a bright promise for blockchain-oriented risk 

management, deployment in practice has to juggle technical viability, ethical integrity, and regulatory acceptance. Such systems 

had better be perpetually engineered, looking into newer fraud patterns, technological changes in the blockchain arena, and 

variations in legal interpretation concerning transparency and accountability. 

 

6. Conclusion 
The incorporation of blockchain technology in digital payment systems has transformed financial transaction landscapes via 

decentralized, transparent, and efficient fund transfers. New and evolving risk phenomena, including double-spending, Sybil 

attacks, and complex contract-related exploits, now challenge the very systems that were built to counteract traditional fraud. 

Hence, this study proposed a hybrid approach that fuses machine learning's predictive powers with interpretable explainable AI 

(XAI) frameworks. 

 

By employing established classifiers like XGBoost, LightGBM, and Random Forest on real and synthetic blockchain 
transaction datasets, we showed how machine learning models could detect high-risk financial behaviors with great accuracy. Even 

more important were the applications of SHAP and LIME to interpret these predictions in a transparent manner, thus bridging the 

gap between black-box decision-making and regulatory, user-trust, and operational needs. 

 

The results indicated that explainable ML models produced effective justifications for risky transactions by highlighting 

essential factors such as transaction value, gas price anomalies, and frequency bursts. These visual and tabular explanations were 

beneficial in fostering a better understanding among stakeholders and providing a basis for the creation of intervention measures 

that are proactive and can be held accountable.  

 

However, it appeared that within the study, accuracy and interpretation faced trade-offs with one another, while considerations 

of computational scalability, explanation fidelity, and cross-chain generalizability all exhibited some limitations. This serves as a 
reminder for more research to be directed towards building efficient, scalable, and regulation-compatible XAI solutions for 

blockchain networks. 

 

In conclusion, explainable machine learning has to be the much-needed advancement in the risk assessment of blockchain 

payment portals. In making AI decisions transparent and justifiable, XAI would improve operational efficiency while being a basis 

to create responsible, ethical, and regulation-ready philosophies for decentralized finance. 
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