
International Journal of AI, BigData, Computational and Management Studies

Noble Scholar Research Group | Volume 4, Issue 3, 82-91, 2023

ISSN: 3050-9416 | https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P109

Importance of Encrypting Data in Transit and at Rest

Using TLS and Other Security Protocols and API

Security Best Practices

Sandeep Kumar Jangam
Independent Researcher, USA.

Abstract: Security of data has become one of the most relevant concerns in the fast-changing digital environment. Due to the

growing number of cyberattacks and data breaches, protecting sensitive data is more important than ever. The development of

cybersecurity practices today is primarily based on data encryption in motion and at rest. The significance of Transport Layer

Security (TLS), Secure/Multipurpose Internet Mail Extensions (S/MIME), and IPsec, among other cryptographic security

protocols, in protecting data at different levels is described in this paper. Additionally, we explore API security best practices

to achieve robust end-to-end protection. In its article, the authors give a thorough overview of the literature available, postulate

a system of data security transmission and storage, and show the results of an analysis that confirms the importance of
encryption processes. With the help of figures, tables, and flowcharts, we effectively depict the process of encryption, the area

of its attack, and the efficiency of the implemented security measures. We conclude by drawing conclusions and highlighting

best practices that can be adopted in real-world systems to address any weaknesses and prevent harm to data.

Keywords: Data Encryption, TLS, Data in Transit, Data at Rest, API Security, Cryptographic Protocols, Secure

Communication, IPsec, HTTPS.

1. Introduction

Figure 1: Security Vulnerability in Unencrypted HTTP Communication

In recent years, the explosion of digital data has accelerated due to the cloud computing environment, mobile apps, the

Internet of Things (IoT), and remote work experiences, which have vastly multiplied the amount of data generated, stored, and

transferred on networks, making it increasingly sensitive. This explosion in the volume of data work has come with a serious

elevation in risks related to inconsiderate access, information leaks, digital crimes and personal identity theft. [1-3] This has

made the safety of information one of the greatest priorities of organizations and governments across the world.
Confidentiality, Integrity, and Availability (CIA), the main pillars of information security, have become the requirements of a

modern IT infrastructure today. Confidentiality implies that sensitive information is only exposed to people who are

authorized; Integrity implies that information is made up of data that is unaltered and trustworthy, and availability implies that

information and services are made available to the users when they need them in a reasonably reliable manner. To achieve such

objectives, effective encryption standards, authentication systems, network security and access control policies should be

undertaken. Due to the rising GDPR, HIPAA, and PCI-DSS regulatory prescriptions, organizations should take security into

their own hands to defend digital assets and secure user confidence. Relative to the context, data in transit encryption

technologies such as TLS, data at rest encryption technologies such as AES, and API security standards such as OAuth 2.0

have emerged as an essential element of a strong cybersecurity strategy. The goal of constant protection of the information

environment must be set not only at protecting one layer of information protection but also at the level of comprehensive

Sandeep Kumar Jangam / IJAIBDCMS, 4(3), 82-91, 2023

83

protection of data, including the structure of the digital environment, to reduce the possibility of the manifestation of a harmful

outcome at each stratum of the digital environment.

1.1. Importance of Encryption

Cybersecurity is a key aspect of the phrase, where encryption is used to transform readable data (plaintext) into unreadable

text (ciphertext) through cryptographic algorithms and secret keys. It makes sensitive information confidential and is
inaccessible to a user with the correct decryption key. Encryption does not just protect personal and corporate data but also

allows organizations to be compliant with such regulations as GDPR, HIPAA, and PCI-DSS. It is instrumental to avoid data

leakages, identity theft, and unauthorized spying. Encryption is generally used in two broad areas: data in transit and data at

rest.

 In-Transit Data: Data in transit refers to data that is actively being transferred, either over the web, on a

proprietary system, or between systems. This may involve emails, file transfers, web traffic and important

communications through APIs. This information is prone to interception, eavesdropping, or alteration by hackers;

therefore, data encryption in transit is crucial. Transport Layer Security (TLS) and Secure Shell (SSH) are examples

of protocols commonly used to protect data being transmitted. One specifically used in HTTPS is TLS, which secures

browser-based communications. Through the encryption of the data transmission process, a Man-In-The-Middle

(MITM) attack could be avoided, and the transmission of data could be secured to ensure that even the intercepted

packet is not readable by unauthorized entities.

 Data at Rest: Data at rest refers to information that has been secured in either physical or virtual storage media, such

as hard drives, databases, Solid State Drives (SSDs), and cloud computing storage services. Despite the fact that it is

not actively moving, such data is still subject to unpermitted access, particularly in case there is a breach of a system,

loss of a device or an insider threat. Such a process of encrypting data at rest helps in protecting the information

stored, even when the data storage is tampered with. The AES-256 (Advanced Encryption Standard) algorithm is one

of the most commonly utilized algorithms to encrypt data at rest because it is strong and performs well. Data

encryption of stored data is commonly coupled with access controls and authentication methods that provide layered

security, helping to preserve data integrity and confidentiality.

1.2. Using TLS and Other Security Protocols and API Security Best Practices
System Integrity in a Modern Digital World. The importance of maintaining the integrity of communication between

systems in the world has particularly strengthened in the wake of the current integrated digital world. Transport Layer Security

(TLS) is one of the best methods of doing this; TLS is a cryptography scheme intended to ensure that data transmitted end-to-

end over a potentially insecure network, such as the internet, is secured. [4,5] TLS, and specifically its most recent version,

TLS 1.3, is a protocol that ensures secrecy, integrity, and authenticity of the data transferred between clients and servers, since

it encrypts data packets. Other cyber threats that TLS eliminates are Man-In-The-Middle (MITM) attacks, replay attacks, and

data tampering. Compared to its predecessors, TLS 1.3 removes obsolete cryptographic algorithms, accelerates handshake

protocols, and requires forward secrecy, making it more secure and faster. Other important protocols for securing various kinds

of communications, along with access points, include IPsec, SSH, HTTPS, and TLS. IPsec is used to protect network-level

traffic in a VPN, SSH gives stable remote access to systems, and HTTPS is based on TLS to secure web-based data exchange.

These are the very layers of security that make up networks.

Along with transport and network-level security, the application layer, including APIs, must be secured, as it can serve as

an entry point to vulnerable backend systems. API security best practices are essential elements in reducing threats such as

injection attacks, broken authentication, and data exposure. It is recommended to implement OAuth 2.0 to have authorization,

employ access and refresh tokens, rate limiting to prevent frequent usage, and input validation so that malicious payloads may

be blocked. Additionally, each endpoint can be controlled with the help of API gateways that centralise security and traffic

management, as well as follow authentication protocols. A combination of TLS and secure API regulations offers an effective

way to protect the data not only during transit but also at the connection point, composing a complete security solution that

best fits cloud-native and distributed systems.

2. Literature Survey
2.1. Evolution of Cryptographic Standards

Secure communications rely heavily on a technology known as cryptography, and cryptography has undergone a dramatic

shift in the face of evolving threats and the increasing computing resources that adversaries can utilise. Old cryptography

schemes, such as the Data Encryption Standard (DES), which was adopted in the 1970s, were adequate in particular because

they offered some protection; however, after being exposed to brute-force attacks due to their limited 56-bit key length. [6-9]

With the enhanced cryptanalysis methods and hardware, the development of DES was considered unfit to serve as a

contemporary security measure. This culminated in the creation and adoption of the Advanced Encryption Standard (AES),

which was developed in 2001 after a rigorous selection procedure initiated by the National Institute of Standards and
Technology (NIST). Coming with the capability of 128, 192-, and 256-bit keys, outstanding in terms of its security, and much

more efficient than its predecessor, AES is a symmetric block cipher structure. Its application in most spheres, such as

Sandeep Kumar Jangam / IJAIBDCMS, 4(3), 82-91, 2023

84

government, finance and technology, stresses the fact that it is significant in contemporary cryptography. The history of these

standards indicates how there has been a continued need to enhance, speed up, and make more flexible the means of encryption

as cyber threats keep changing.

2.2. Transport Layer Security (TLS)
TLS is now effectively a de facto standard protocol for securing network-based communications, compared to the more

outdated Secure Sockets Layer (SSL) protocols. TLS is the transport layer protocol that verifies file privacy, file integrity, and

certificate-based authentication between servers and clients. The Internet Engineering Task Force (IETF) standardized the

latest version, TLS 1.3, in RFC 8446 and includes many improvements over its predecessor, TLS 1.2. Perhaps, the best

modification is this reduction of the number of steps of handshakes involving a decrease of the number of steps to three instead

of six, thus reducing the latency and increasing the speed and applicability of the protocol to mobile and real-time applications.

Additionally, TLS 1.3 requires the use of forward secrecy via ephemeral key exchanges (ephemeral key signing), such as

Diffie-Hellman Ephemeral (DHE) and Elliptic Curve Diffie-Hellman Ephemeral (ECDHE), to ensure that more privacy is

guaranteed, as session keys cannot be decrypted later. This protocol also streamlines choosing the cipher suite as it deprecates

its older and less secure options and focuses on a small set of trustworthy newer ones. Table 1 indicates that such alterations

create a tighter, more compact security procedure, which is more aligned with the needs of the current internet-based

communications.

2.3. IPsec and Other Protocols
Whereas TLS ensures that data is being secured on the transport layer, Internet Protocol Security (IPsec) deals with the

network layer. Thus, it is an extended level of securing IP packets. The IPsec guarantees privacy, integrity, and validation,

where every packet is encrypted and verified in the process of IP communication. It employs these protocols: Authentication

Header (AH) and Encapsulating Security Payload (ESP), as well as the key exchange process, such as IKEv2 (Internet Key

Exchange version 2). IPsec is also highly practical in virtual private networks (VPNs) and is used to secure information in

untrusted networks, such as the Internet. Besides IPsec, other security protocols exist that address various communication

requirements. For example, Secure/Multipurpose Internet Mail Extensions (S/MIME) can be used to encrypt and digitally sign

emails end-to-end, ensuring that messages are private and their content cannot be tampered with. Hypertext Transfer Protocol

Secure (HTTPS) is an extension or useful enhancement of TLS to provide security on web traffic, and the Secure Shell (SSH)

protocol enables a secure means of accessing a remote host by user-name/password authentication and a secure means of
transferring files. All these protocols are significant in ensuring the protection of various aspects of digital communications and

data transfer.

2.4. API Security Practices
Due to the growing popularity of Application Programming Interfaces (APIs) as a means of communication between

backend services and frontend interfaces in modern applications, API security has become a pressing concern. Being open to

external parties with APIs, internal functions are exposed to external attacks through injection, broken authentication, and data

leakage. OAuth 2.0 is also one of the most commonly used standards in API protection, and it includes a safe and standardized

way of access delegation. OAuth enables applications to connect with the user data without working out the credentials

directly, thereby minimizing the chances of exposing them. Another noteworthy security aspect is the API Gateways, which

act as intermediaries that apply security logic such as authentication, rate limiting, and input validation. These gateways also

keep a note of the traffic and abuse. Input validation will help ensure that the data passed to the API is cleaned and formatted
correctly, thereby reducing the possibility of injection attacks and other types of input manipulation. As presented in Figure 1,

the following are some common API attack vectors: injection, authentication bypass, lack of rate limiting, and improper error

handling. Multi-dimensional API security practices to counter these vectors can be considered the foundation for resilient and

trustworthy applications.

2.5. Research Gaps
Although there are highly sophisticated tools and security procedures that can be used, technically, most systems still use

old or poorly set technologies. For example, not all businesses can abandon derelict TLS versions or weak cypher suites, and

their transactions can be intercepted and manipulated. Likewise, the budget implementation of API security is often maligned

or uneven, and it is not surprising to witness numerous cases of breaches and information leaks. Most of the organizations do

not have a coherent security structure that would incorporate cryptographic standards, transport layer security, as well as
network security protocols and API security principles into a whole. Such fractal fashion generates security blind spots and

expands the risk on a broader level. There are also many separate studies that involve one or more protocols or practices.

However, there is a minimal number of studies that attempt to compare and contrast all these aspects to arrive at a complete

security practice in an organized manner. This type of integrated approach is especially pressing in cloud-native and

microservices applications, in which distributed elements need to securely connect and communicate at various levels and

across a variety of environments. This paper attempts to fill these gaps by suggesting an integrated approach, which can pull

the best practices employed by cryptography, transport security, network-level encryption, and API protection, ultimately

improving the total security of the contemporary digital infrastructures.

Sandeep Kumar Jangam / IJAIBDCMS, 4(3), 82-91, 2023

85

3. Methodology
3.1. System Design Overview

Figure 2: System Design Overview

Our security model provides end-to-end protection of data and services by combining industry standards and best practices in

security technologies. [10-13] It comprises the following important elements:

 In-transit encryption with TLS 1.3: All data moving between servers and their clients is secured by TLS 1.3. As

the most recent version of the Transport Layer Security protocol, TLS 1.3 addresses the complexity of handshakes,

discards legacy cryptographic methods, and ensures forward secrecy through ephemeral key exchanges. This ensures

the previous communications remain secure, even if a session key is compromised. It is also superior in terms of

performance, as it reduces latency, making it suitable for current web and mobile applications.

 At-Rest Encryption to AES-256: The Advanced Encryption Standard (AES) with a 256-bit key size is used to

securely store data. This gives strong cryptographic protection. AES-256 is known to be very powerful and effective,
and meets the government and industry standards. It makes sure that the sensitive information becomes encrypted and

inaccessible to authorized users in files, backup storage, and even databases.

 API Gateway with OAuth 2.0: The system utilises an API Gateway, which serves as a single point of entry for all

client requests to backend services. The gateway also performs important processes, such as rate limiting, logging,

and security enforcement. API Gateway is used with OAuth 2.0 to manage the authentication and the authorization of

those who can access the resources, preventing access by other unverified users and applications. This helps protect

against unauthorised entry and attacks on tokens.

 Intrusion Detection Systems (IDS): To guard against the threat of computer abuse, Intrusion Detection Systems

(IDS) are introduced to detect network traffic and activities within the system that indicate malicious intentions or

policy violations. These systems apply signature-based and anomaly-based techniques of identification of threats in

real time. IDS alerts enable the administrators to react fast to possible hacks, thus reducing the chances of destruction
or loss of information. The preventive measures are supplemented by instituting a reactive defence through IDS.

3.2. Encryption Workflow

Figure 3: Encryption Workflow

 Sender: The encryption process begins with the sender, who may be a user, application, or service, to initiate a

communication session. The sender formats the data that will be transmitted, such as a file, an API request or a

message. Once this information is in the environment of the sender, a secure protocol is used to process it, and hence,

it is guaranteed confidentiality and integrity when it travels.

 TLS Encryption: Transport Layer Security (TLS) 1.3 is used to secure data before transmission on the network. In

this step, secure communication between the receiver and the sender is set up, wherein the ephemeral Diffie-Hellman
method is used to exchange encryption keys with the opposite party. After establishing the session, the information is

Sandeep Kumar Jangam / IJAIBDCMS, 4(3), 82-91, 2023

86

securely encrypted, hence making it unreadable to any other party that may intercept the communication through

fraudulent means.

 Network: The encrypted information moves over the network, which can be Local Area Networks (LANs), the Wide

Area Networks (WANs) or the internet. The data stays encrypted even as it is being transported between the two

sides, as there is an encrypted layer provided in the span of the TLS session. The encrypted message would be

meaningless to attackers or other malicious programs, even if the communication is intercepted.

 TLS Decryption: The TLS protocol then performs a decryption process when the information reaches the receiver,

using the session keys that were agreed upon during the negotiation. In this decryption process, the original content is

retrieved as the sender intended it to be. At this point, the integrity of the message is also confirmed to make sure that

the message has not been altered in the course of transmission.

 Receiver: The receiver then deciphers and processes the data. This may involve presenting it to a user, storing it, or

handing it over to another part of the system for further processing. Here, all the data is reinstated to its pristine

condition and is usable since it has been transported over a secure end-to-end transmission.

3.3. Implementation Environment

Figure 4: Implementation Environment

 Programming Language: Recent and secure programming languages, such as Python or Go, are used to develop the

essential components of the security infrastructure. Python is simple, has extensive libraries and fast development

cycles, making it an excellent choice for implementing APIs, automation scripts, and integration layers. [14-17] In

contrast, Go is high-performance and has concurrency by default, and it is apt to construct backend services and

security modules of reliable scalability. Language is selected according to the requirements of particular performance

and the scale of each component present in the system.

 Cloud Provider: The system will run on a prominent cloud service provider, e.g., Amazon Web Services (AWS),

Microsoft Azure, or Google Cloud Platform (GCP). The services are backed by resilient infrastructure, security

services built upon them, and compliance with industry specifications. Illustratively, AWS offers built-in security
features, such as Key Management Service (KMS), Identity and Access Management (IAM), and Virtual Private

Cloud (VPC), to ensure secure deployment. Redundancy, disaster recovery, and easy scaling are also possible with

respect to cloud hosting in order to guarantee high availability, in addition to data protection.

 Monitoring Tools: To provide visibility and ensure overall security, the system incorporates state-of-the-art tools to

monitor and observe all aspects, including Prometheus, Grafana, and the ELK Stack (Elasticsearch, Logstash,

Kibana). They are used to monitor performance, as well as to record system activity and reveal anomalies in real-time.

Moreover, the monitoring services built on the cloud, such as AWS Cloud Watch or Google Cloud Operations Suite,

can be used to provide more in-depth information regarding the health of the system and its usage. With such an

aggressive watch system in place, it would be possible to react promptly to any threats and performance problems.

3.4. Algorithm Details

 AES Encryption: In AES encryption, we will denote the plaintext by 𝑃, the encryption key by 𝐾 and the output

ciphertext by 𝐶. The AES algorithm works in fixed block lengths (usually 128 bits) and uses a number of substitution,
permutation and mixing functions in a number of rounds, 10 (for 128 and 192 bit keys) or 12 (for 256 bit keys). In this

encryption process, the plain text, denoted by 𝑃, undergoes an initial step of AddRoundKey, followed by a sequence

of the same sub-transformations: SubBytes, ShiftRows, MixColumns, and another instance of AddRoundKey. The

last result, 𝐶 = AES (𝑃), is a ciphertext block which only the right key 𝐾 can decrypt.

Sandeep Kumar Jangam / IJAIBDCMS, 4(3), 82-91, 2023

87

Figure 5: Algorithm Details

 AES Decryption: AES decryption is the process of encryption and solves the ciphertext 𝑇 to find the original

plaintext 𝑃 with the same key 𝐾. The process is the opposite of the encryption process, and it consists of the

InvMixColumns, InvSubBytes, InvShiftRows, and AddRoundKey algorithms (in that order). Round keys are also
generated using the same key schedule, but they are applied in reverse during decryption. Mathematically, this is

modelled as 𝑃=AES (𝐾− 1) where AES 𝐾− 1 is the decryption operation of key 𝐾.

 TLS Handshake: The TLS handshake is an essential part of the TLS protocol, according to which a safe connection

between a client and a server is created. In TLS 1.3, the handshake is simplified so as to minimize latency and add

security. It starts when the client sends a ClientHello message with the ciphers that they support and a value generated

randomly. The server returns a ServerHello and then selects parameters that can work together, providing the server's

digital certificate. A key exchange is then done between both parties, via Ephemeral Diffie-Hellman (ECDHE), after

which a shared session key is formed. The certificate validation forms authentication, and the end of the handshake

follows with confirmation of the encryption parameters by both ends. Following this, secure communication will

commence that has been preset with the agreed-upon session key.

3.5. API Security Configuration
To provide a strong defence against revealed application interfaces, our system employs a multi-layer API security setup

that complies with best industry practices. First and foremost, HTTPS (HTTP over TLS) is applied to all API endpoints,

ensuring encrypted communication. This makes it impossible for the attacker to intercept or modify the data transmitted, like

user credentials, access token (s), or other highly sensitive payloads. HTTPS offers security features such as confidentiality and

integrity, and plays a crucial role in protecting against Man-in-the-Middle (MITM) attacks and eavesdropping. TLS 1.3 also

improves this security further since it removes old cryptographic algorithms and minimizes the latency of handshaking.

Second, the authorization framework is created with the use of OAuth 2.0, which offers secure access control represented in a

token method. Access tokens are sent to all clients after authentication, and new access tokens can be obtained without re-

authentication by using refresh tokens, which enhances the user experience without requiring additional verification.

Roles and scopes are specified to implement fine-grained access control, such as to restrict the scopes of what each token

is allowed to access in the API. OAuth flow and API Gateway are safely combined, and the gateway now serves as a request-

handling control point. Also, rate limiting is provided by the API Gateway in order to limit abuse (including Denial-Of-Service

(DoS) attack or brute-force attack), etc. The system can maintain the availability and performance of authorised users by

having a limit on the number of requests that a client can make in a specific time period. To complement this, IP whitelisting

can be applied to limit access to known and trusted IP addresses, particularly where an API is being targeted administratively

or otherwise considered sensitive. This will provide further protection since there will be less area of the surface exposed to the

internet. Together, these mechanisms make sure that the API is safe, robust, and up to the standards of modern cybersecurity,

which manages to alleviate the widespread attack vectors that include injection, the hijacking of sessions, and credential

stuffing.

4. Results and Discussion
4.1. Performance Metrics

Table 1: Data Transfer Performance Comparison

Test Case Difference (%)

TLS Encrypted 77.78%

Unencrypted 18.52%

Sandeep Kumar Jangam / IJAIBDCMS, 4(3), 82-91, 2023

88

Figure 6: Graph representing Data Transfer Performance Comparison

 Mean Time Delay (ms): During the test of the performance, it was determined that the activation of the TLS

encryption protocol produced a significant rise in the average latency. To be specific, the latency increased by 77.78

percent, as it took longer (32 milliseconds compared to 18 milliseconds) in the situation when TLS was in use. Such

overhead is mostly referred to the TLS handshake and the encoding/decoding processes that take place at each end of

the communication pipe. Although the increase can be measured, it remains within the tolerable levels of

contemporary web and mobile applications. It can be considered a feasible compromise, given the enhanced security

it brings to the environment.

 Throughput (MB/s): Units of throughput calculated to measure the amount of data transferred in a single second also

recorded a slight decline when encryption was activated. The mean rate fell by 18.52 percent, or 25 MB/s, to 110

MB/s with TLS in a non-transparent setup where the average rate was 135 MB/s. This is explained by the fact that

these processes require a significant amount of computational resources, as each packet needs to be encrypted and

decrypted. In contrast, the encryption process increases the size of data packets by a small margin. The trade-off is

compensated by the dramatic increase in data confidentiality and integrity despite the achieved drop in throughput,

which can still sustain common enterprise work.

4.2. Security Impact
The addition of TLS 1.3, which is used to encrypt transport-layer communications, and AES-256, as a data-at-rest

encryption, has been the main contributing factor towards a more secure overall system environment. TLS 1.3 was able to
reverse numerous classes of network-based attacks owing to the introduction of forward secrecy and a decrease in the

complexity of the handshake. In controlled security testing and penetration tests, however, the most common Man-In-The-

Middle (MITM) and replay attacks, which are performed during unencrypted communications, were found ineffective with

TLS verification in action. The reason is that TLS 1.3 enforces ephemeral key exchanges, so even in the event of such a

compromise, the adversary cannot decrypt the previous messages. Similarly, there is a strong protocol structure that brooks

outdated cryptographic suites, which help in further limiting exposure to known attacks. Simultaneously, the encryption used

in data at rest was done using AES-256, so that before the accessing of data by those who were not supposed to use it, it was

unreadable and thus remained secure.

AES-256 utilises strong symmetric cyphers that cannot be broken without brute force and can meet the requirements of

high security standards, making it applicable to any situation that requires the protection of sensitive information, including

databases and storage levels. These encryption tools could be complemented with Intrusion Detection Systems (IDS), which
are used to scan traffic and identify possible intrusions in real-time. The various types of intrusion attempts that were identified

and blocked by the IDS were packet injection, protocol manipulation and unauthorized scans, among others. These were

especially significant in those simulated situations of the attack, where real-world threats were simulated. During the baseline

tests with encryption turned off, a couple of MITM attacks were performed, revealing session cookies and sent credentials.

Nevertheless, with complete protection through TLS, no data leaks or session hijacking were observed, which confirms that the

attack surface has decreased significantly in the system. This shows the usefulness of a proactive approach like the coding

protocols and the reactive approach, which, in their combination, form a multilayered type of defense, which provides

prevention and quick detection functions.

77.78%

18.52%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

TLS Encrypted Unencrypted

Difference (%)

Sandeep Kumar Jangam / IJAIBDCMS, 4(3), 82-91, 2023

89

4.3. API Test Results
To determine the efficiency of the adopted API security features, simulated attacks were carried out and compared with

the period before their implementation, before integrating the major controls, including OAuth 2.0, input validation, and rate

limiting. The attack vectors applied to the test environment were common, and the results indicated a significant drop in

vulnerabilities after the security measures were implemented.

 Successful instances of SQL Injection: Before the implementation of some validation and access rights, all attempts
to exploit SQL injection used to be successful. With input fields, attackers could inject malicious SQL queries and

configure the backend databases. But once the sanitization of inputs and the enforcement of parameterized queries

have been realized, the rate goes down to 0%. This confirms that the use of server-side validation and query hardening

is a sensible approach to eliminating this type of vulnerability.

 Recruitment Successes of XSS Attacks: There was also the ability to utilize fully the cross-site scripting (XSS)

exploits prior to security measures being in place. With a 100 per cent success rate, attackers were able to introduce

the aspect of injecting malicious scripts to leverage session tokens or control client-side behaviour. After the

implementation, a stringent output encoding protocol was implemented, as well as input filtering and sustaining

correct content security policies. These defenses helped narrow down the success rate of XSS attacks to 0% to make

sure that the user interface and sessions that use browsers are equally secure.

 Malicious Access Attempts: Lack of access control enabled unauthorized access attempts to be successful at 100
percent before security enhancements. Once OAuth 2.0 was combined with adequate scope restrictions and valid

tokens, the majority of unauthorized access cases were prevented. Nevertheless, a quarter of the twelve simulated

clicks were marked and interrupted before their completion, which lowered their rate to 8.33%. Such a slight

infiltration is of relevance when it comes to maintaining constant checks on and fine-tuning of access rules, not to

mention that it also proves the significant benefit of API access regulation.

4.4. Discussion
It can be conclusively stated that the application of modern encryption procedures and API security solutions has a

substantial impact on the confidentiality and integrity of system communications, as well as on data processing. Although the

latency is added in the case of TLS 1.3, and indeed its numbers are measured at 32 ms, as opposed to 18 ms on the previously

unsecured transfer, the trade is quite minor. The incremental delay is practically undetectable to end users, particularly when

balanced against the high level of security assurances that TLS can offer, e.g. they are immune to Man-In-The-Middle (MITM)
and replay attacks, and session hijacking. TLS 1.3 also handles the handshake process more efficiently and provides further

protection against attackers through forward secrecy, while maintaining acceptable performance levels. On par with this is the

enhanced API-level security profile. There were other serious complications, such as SQL injection, cross-site scripting (XSS),

and unauthorized access that targeted the APIs before the OAuth 2.0, input validation, and rate limiting were introduced.

Identified vulnerabilities were essentially nonexistent after deployment, as the number of unsuccessful attempts to inject a

successful injection was reduced by 100%.

Meanwhile, the rate of malicious interference in the network demonstrated a significant decrease in the number of

incidents of unauthorised access. This illustrates the power of integrating identity-based authorization, traffic control and input

sanitization into an organization to comprise an API security plan. The results stress the fact that layered security is much more

effective compared to isolated controls. The framework is able to mitigate a wide range of attack vectors by combining OAuth
2.0 and IP whitelisting, as well as rate limiting, with powerful cryptographic measures such as AES-256 to protect data at rest

and TLS 1.3 to protect data in transit. It does not merely guard against unauthorized access but more so, against data

interception, corruption and leakage. In summary, the architecture offers a viable and scalable tradeoff between performance

and resilience in security. The findings support the idea that embracing contemporary security principles and guidelines is not

only a good choice but also a necessary measure to support the secure operation of modern, cloud-native, and distributed

systems in the face of emerging new threats.

5. Conclusion
The results of the present study are important to emphasize the key role of encryption and layered security as a means to

protect modern digital systems. In the modern threat environment, data encryption both in motion and at rest is a necessity, not

an option, for maintaining the privacy, integrity, and trust of digital communication. Transport-level encryption with TLS 1.3

guarantees all communications remain encrypted and cannot be eavesdropped and/or distorted with the deployed cryptographic

technologies (e.g. short-lived keys and forward secrecy). At the same time, AES-256 is an effective form of encryption on

stored data, which is able to protect sensitive data even in the event of unauthorized access to storage. These protocols,

combined, allow creating a high cryptographic baseline that minimizes the risk of data breaches.

In addition to encryption, this paper reveals that it is important to reinforce the application layer, specifically by secure

API design. Techniques such as OAuth 2.0, input validation, rate limiting, and IP whitelisting play a crucial role in mitigating
threats like injection attacks, unauthorised access, and resource misuse and abuse. The use of these measures led to the full

displacement of injection vulnerabilities and a downsizing of intrusive efforts. This confirms that encryption is never enough

Sandeep Kumar Jangam / IJAIBDCMS, 4(3), 82-91, 2023

90

without the use of additional application-level protection. The outlook going forward is that the field of security continues to

evolve, especially with the advent of quantum computing, which promises to compromise existing cryptographic algorithms. It

is necessary in the future to research the incorporation of quantum-resistant cryptography, such as lattice-based and multi-

variable polynomial schemes, to put systems in a position to withstand a quantum attack after the advent of quantum

computing. Moreover, the complexity and scale of APIs are getting increasingly high, which requires AI-powered anomaly

detection systems to monitor behavior and react to suspicious activity in real-time, as opposed to rule-based models.

Finally, companies are mandated to implement a layered security approach, which comprises strong encryption, overall

API protection, and active monitoring, in order to achieve end-to-end protection. It is a strategy that not only decreases the

personal points of failure but also establishes a flexible and resilient defence posture. With the increased sophistication of

threats, cryptographic standards, secure authentication, and smarter monitoring systems will be necessary to ensure the

integrity of trust, compliance, and the continuation of operations in both traditional and cloud-native architectures. The

conclusion is obvious: security has to be designed in, not an afterthought.

References

1. Smid, M. E. (2021). Development of the Advanced Encryption Standard. Journal of Research of the National Institute of

Standards and Technology, 126, 126024.

2. Diffie, W., & Hellman, M. E. (2022). New directions in cryptography. In Democratizing Cryptography: The Work of

Whitfield Diffie and Martin Hellman (pp. 365-390).

3. Dierks, T., & Rescorla, E. (2008). The Transport Layer Security (TLS) protocol version 1.2 (RFC 5246).

4. Rescorla, E. (2018). The Transport Layer Security (TLS) protocol version 1.3 (RFC 8446).

5. Perlman, R., Kaufman, C., & Speciner, M. (2016). Network security: private communication in a public world. Pearson

Education India.

6. Kent, S., & Seo, K. (2005). Security architecture for the Internet Protocol (No. RFC4301).
7. Fielding, R. T., & Taylor, R. N. (2002). Principled design of the modern web architecture. ACM Transactions on Internet

Technology (TOIT), 2(2), 115-150.

8. Wang, J. S., Liu, C. H., & Lin, G. T. (2011, October). How to manage information security in cloud computing. In 2011

IEEE International Conference on Systems, Man, and Cybernetics (pp. 1405-1410). IEEE.

9. Volini, A. G. (2020). A Deep Dive into Technical Encryption Concepts to Better Understand Cybersecurity & Data

Privacy Legal & Policy Issues. J. Intell. Prop. L., 28, 291.

10. O'Neill, M., Heidbrink, S., Whitehead, J., Perdue, T., Dickinson, L., Collett, T., ... & Zappala, D. (2018). The Secure

Socket Layer (SSL) API is an operating system service, as presented in the 27th USENIX Security Symposium (USENIX

Security' 18) (pp. 799-816).

11. Zulkifli, M. Z. W. M. (2007). Evolution of cryptography. Obtenido de Evolution of Cryptography: https://idazuwaika.

Files. wordpress. com/2, 8(06).

12. Nithyanand, R. (2009). A Survey on the Evolution of Cryptographic Protocols in ePassports. Cryptology ePrint Archive.
13. Mahboob, A., & Ikram, N. (2004). Transport Layer Security (TLS)–A Network Security Protocol for E-commerce.

Pakistan Navy Engineering College (PNEC) Research Journal.

14. Ofoeda, J., Boateng, R., & Effah, J. (2019). Application programming interface (API) research: A review of the past to

inform the future. International Journal of Enterprise Information Systems (IJEIS), 15(3), 76-95.

15. Kaufman, C., Perlman, R., & Speciner, M. (2002). Network Security: Private Communication in a Public World. Prentice

Hall.

16. Wu, D., Jing, X. Y., Zhang, H., Kong, X., Xie, Y., & Huang, Z. (2020). Data‐driven approach to application programming

interface documentation mining: A review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,

10(5), e1369.

17. Nejad, B. (2022). Cyber Security. In Introduction to Satellite Ground Segment Systems Engineering: Principles and

Operational Aspects (pp. 223-244). Cham: Springer International Publishing.
18. Bock, L. (2021). Modern Cryptography for Cybersecurity Professionals: Learn how you can leverage encryption to better

secure your organization's data. Packt Publishing Ltd.

19. Mosteiro-Sanchez, A., Barcelo, M., Astorga, J., & Urbieta, A. (2020). Securing IIoT using defence-in-depth: towards an

end-to-end secure industry 4.0. Journal of Manufacturing Systems, 57, 367-378.

20. Sun, R., Wang, Q., & Guo, L. (2021, July). Research towards key issues of api security. In China Cyber Security Annual

Conference (pp. 179-192). Singapore: Springer Nature Singapore.

21. Pappula, K. K. (2020). Browser-Based Parametric Modeling: Bridging Web Technologies with CAD

Kernels. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 56-

67. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P107

22. Rahul, N. (2020). Optimizing Claims Reserves and Payments with AI: Predictive Models for Financial

Accuracy. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 46-

55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106

https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P107
https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106

Sandeep Kumar Jangam / IJAIBDCMS, 4(3), 82-91, 2023

91

23. Enjam, G. R. (2020). Ransomware Resilience and Recovery Planning for Insurance Infrastructure. International Journal

of AI, BigData, Computational and Management Studies, 1(4), 29-37. https://doi.org/10.63282/3050-9416.IJAIBDCMS-

V1I4P104

24. Pappula, K. K., & Anasuri, S. (2021). API Composition at Scale: GraphQL Federation vs. REST

Aggregation. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 54-

64. https://doi.org/10.63282/3050-9246.IJETCSIT-V2I2P107
25. Pedda Muntala, P. S. R., & Jangam, S. K. (2021). Real-time Decision-Making in Fusion ERP Using Streaming Data and

AI. International Journal of Emerging Research in Engineering and Technology, 2(2), 55-

63. https://doi.org/10.63282/3050-922X.IJERET-V2I2P108

26. Rahul, N. (2021). AI-Enhanced API Integrations: Advancing Guidewire Ecosystems with Real-Time Data. International

Journal of Emerging Research in Engineering and Technology, 2(1), 57-66. https://doi.org/10.63282/3050-922X.IJERET-

V2I1P107

27. Enjam, G. R., & Chandragowda, S. C. (2021). RESTful API Design for Modular Insurance Platforms. International

Journal of Emerging Research in Engineering and Technology, 2(3), 71-78. https://doi.org/10.63282/3050-922X.IJERET-

V2I3P108

28. Rusum, G. P. (2022). Security-as-Code: Embedding Policy-Driven Security in CI/CD Workflows. International Journal of

AI, BigData, Computational and Management Studies, 3(2), 81-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-

V3I2P108
29. Pappula, K. K. (2022). Containerized Zero-Downtime Deployments in Full-Stack Systems. International Journal of AI,

BigData, Computational and Management Studies, 3(4), 60-69. https://doi.org/10.63282/3050-9416.IJAIBDCMS-

V3I4P107

30. Anasuri, S., Rusum, G. P., & Pappula, kiran K. (2022). Blockchain-Based Identity Management in Decentralized

Applications. International Journal of AI, BigData, Computational and Management Studies, 3(3), 70-

81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I3P109

31. Pedda Muntala, P. S. R., & Karri, N. (2022). Using Oracle Fusion Analytics Warehouse (FAW) and ML to Improve KPI

Visibility and Business Outcomes. International Journal of AI, BigData, Computational and Management Studies, 3(1),

79-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I1P109

32. Rahul, N. (2022). Optimizing Rating Engines through AI and Machine Learning: Revolutionizing Pricing

Precision. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(3), 93-
101. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I3P110

33. Enjam, G. R. (2022). Secure Data Masking Strategies for Cloud-Native Insurance Systems. International Journal of

Emerging Trends in Computer Science and Information Technology, 3(2), 87-94. https://doi.org/10.63282/3050-

9246.IJETCSIT-V3I2P109

https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104
https://doi.org/10.63282/3050-9246.IJETCSIT-V2I2P107
https://doi.org/10.63282/3050-922X.IJERET-V2I2P108
https://doi.org/10.63282/3050-922X.IJERET-V2I1P107
https://doi.org/10.63282/3050-922X.IJERET-V2I1P107
https://doi.org/10.63282/3050-922X.IJERET-V2I3P108
https://doi.org/10.63282/3050-922X.IJERET-V2I3P108
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I2P108
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I2P108
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P107
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P107
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I3P109
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I1P109
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I3P110
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I2P109
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I2P109

