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Abstract: The key to the development of intelligent manufacturing systems is the realization of precision and low-latency 

defect detection in real-time. The conventional methods that depend on the centralized cloud computing are prone to network 

latency, scale and low flexibility of integration, particularly in the industrial environment that has limited connectivity. This 

paper proposes a computationally efficient computer vision pipeline that can be deployed to the edge. This computer vision 
pipeline is designed to fill the gap in the demand for high-performance defect detection and the resource limitations of edge 

systems. This system uses a model of compact deep learning trained with quantization and pruning to achieve low 

computational complexity without affecting accuracy. The system can easily interface with different kinds of industrial 

hardware using the modular architecture, such as robotic arms, conveyor systems, and PLCs. We argue for the validity of our 

methodology using a practical case study that involves detecting surface defects in manufactured metal components. With an 

inference speed of 30 FPS on the NVIDIA Jetson Nano and a classification accuracy of 97.6%, our answer outperforms 

classical architectures like ResNet-50 in edge environments. A comparison of the lightweight CNN models, deployment 

optimizations with TensorRT and system-level performance measures is also provided in the paper. Besides, we solve key 

problems such as pipeline latency, high resistance to lighting changes, and the reconfigurability of inspection task dynamics. 

Holistic assessments demonstrate that our deployed solution to the edges is highly efficient and reliable in terms of 

manufacturing products, but its use can be expanded into such diverse fields as agriculture, healthcare, and unmanageable 
vehicles. This study opens the door to the use of compact vision systems in such low-capacity spaces, achieving the same level 

of performance as competing systems. 
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1. Introduction 
As the world welcomes the age of Industry 4.0, today's production industries are discovering value in the idea that 

intelligent automation can be leveraged to enhance both quality and efficiency in production. Computer vision is one of the 

most enabling technologies used in the automation of visual inspection, including defect detection, classification, and quality 

control, among other applications. [1-3] These are repetitive tasks that human operators or rule-based image processing system 

have always carried out and now deep learning models that can detect complex defects with high precision have been able to 

do. Nevertheless, most current vision systems rely heavily on cloud processing, which poses several challenges, including 

latency, network dependency, and data privacy issues. The movement of large amounts of high-resolution image data to the 

cloud not only consumes excessive bandwidth but also slows down inference, rendering it unsuitable for use in time-sensitive 

industrial applications. It can also deteriorate reliability due to unstable network conditions in remote locations or on factory 

floors. To alleviate such challenges, there has been a growing increase in edge computing, where computation is handled 

locally on the device where the information is created or nearby. The benefits of Edge AI solutions are the ability to process in 

real time and minimize dependence on the connection to the outside world, increased responsiveness, and energy and resource 
efficiency. 

 

1.1. Importance of Edge-Deployed Vision Systems 

 
Figure 1: Importance of Edge-Deployed Vision Systems 

 

 Reduced Latency: In fast manufacturing processes, real-time decisions are necessary to maintain the rapid pace of 

assembly lines. Vision systems deployed at the edge eliminate the need to send data to remote servers for analysis, 
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thereby significantly reducing response time. Such a low-latency processing provides the detection and subsequent 

action on a defect immediately, providing the ability to stop the production or relocate defective products, eliminate 

the possibility of lapses in quality and reduce downtimes. 

 Bandwidth Optimisation: Conventional cloud-based systems demand the constant transfer of high quantities of image 

or video information, and as such, they can choke the network infrastructure, causing bottlenecks. Edge computing is 

one solution to this problem, as inference is carried out at the edge, and only necessary information, such as defect 
alerts or processed summaries, is sent to central servers. This selective transmission would not only save bandwidth 

but also work more smoothly under a restricted connectivity environment. 

 Increased Security: Entire sectors (particularly those that handle trade secrets or need to be able to keep high-security 

processes confidential) have extremely intense data protection needs. On edge devices, data is handled in a secure 

area, resulting in a significant reduction of the risk of data breach by not exposing raw information to other networks. 

Edge-hosted systems help ensure that data protection standards are met, further enhancing trust in automated quality 

control. 

 Scalability: Edge-based architectures are decentralized and quite modular, which means that they are highly scalable. 

A production line can be expanded with new vision nodes or devices that do not place undue strain on a central server 

and that do not complicate reconfiguration. The edge devices can be operated independently, enabling the system to 

expand naturally and facilitating distributed inspection at all production stations or facilities. 

 

1.2. Problem Statement 

Although significant progress has been made in computer vision algorithms and powerful cloud computing infrastructure 

is ubiquitous, the successful rollout of intelligent vision systems into manufacturing still presents a number of substantial 

challenges to overcome. [4, 5] Latency sensitivity is one of the most urgent problems. In high-volume production lines, 

particularly those operating in the automotive, electronics, or metal industries, a slight processing delay can result in clogging, 

skipped defects, or unscheduled halts. Cloud-based vision systems are computationally efficient and may work only by sending 

data to distant servers to run inference and decision-making, despite utilising their computational capabilities effectively. This 

data transmission brings latency, which under real-time quality assurance missions is mostly undesirable because timing is of 

the essence. Another difficulty is evident in the complexity of integration. Most manufacturing plants today continue to use 

legacy machinery in conjunction with classic control systems, including Programmable Logic Controllers (PLCs), which are 

not designed to be integrated with AI tools or cloud-based services. The adoption of modern, well-developed vision systems 
driven by cloud environments leads to major changes in architecture, the development of pipeline middleware, and support, 

which can be potentially risky due to downtime during implementation and require a set of highly advanced skills. Such 

complexity may serve as a barrier to adoption, especially among small and medium-sized enterprises. The factory-level 

deployment is further complicated by scalability and cost considerations.  

 

Cloud inference of high-resolution image data is expensive in terms of bandwidth and computational resources, which 

makes running repeatable operations in the cloud potentially very expensive, as increasing the number of inspections/vision 

nodes also increases quickly. The combination of these costs with the risk of network instability increases the economic and 

technical unsustainability of centralized solutions in a wide variety of cases, particularly when applied to multiple production 

lines or distributed facilities. Lastly, a domain-specific adaptability is also a major problem. General-purpose deep learning 

models, although likely achieving high accuracy on standard datasets, tend to perform poorly when transferred to individual 
situations with particular surface textures, lighting, or unusual defect occurrence patterns, unlike in industrial cases. Scale 

retraining typically involves large quantities of annotated data and is expensive due to the need for retraining models to 

perform a specific task in a particular domain. This reduces the real-life application of ready-made vision systems in niche 

manufacturing settings. Collectively, these issues reveal the importance of having a localized, low-latency, scalable, and easy-

to-integrate computer vision tool, one that is optimized for edge deployment and one that is adapted to the dynamics of the 

real-world industrial environment. This paper proposes overcoming such limitations by providing an effective and efficient 

edge AI pipeline for defect detection. 

 

2. Literature Survey 
2.1. Traditional Defect Detection Techniques 

Historically, the manufacturing processes for detecting defects have been largely dependent on visual inspection of the 

object being inspected or simplistic applications of image processing. [6-9] Simple techniques like thresholding, edge detection 

and histogram analysis were mostly employed because of their computational efficiency. Although these methods provided a 

lower degree of defect identification, they were highly sensitive to changes in lighting, object orientation, and noise. Moreover, 

those methods were inconsistent and inflexible, and they could not be effectively generalised across different work conditions. 

The use of manually defined rules and thresholds also rendered them useless in dynamic, real-life manufacturing 

environments. 
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2.2. Machine Learning and Classical Approaches 

Following the emergence of machine learning, advanced algorithms such as Support Vector Machines (SVM), k-Nearest 

Neighbours (k-NN), and decision trees were sought to achieve greater accuracy in defect classification. The following models 

employed the manually designed features (Histogram of Oriented Gradients (HOG) and Local Binary Patterns (LBP) to 

express the attributes of an image. Although they were significantly better than traditional approaches, the performance of 

these methods was nonetheless limited by several factors. Noisy or poor-quality data, along with an onerous amount of 
preprocessing and domain knowledge, were the frequent bane of these classical approaches, and features were often designed 

manually. Consequently, they did not scale or provide much resilience in complex or large-scale manufacturing environments. 

 

2.3. Deep Learning-Based Approaches 

Over the past few years, a revolutionary method of deep learning has emerged in the field of defect detection, proving to 

be significantly more effective and flexible than other techniques. CNNs, such as ResNet, VGG, and YOLO, have been proven 

to be outstanding in both fault identification and classification across all industrial settings. These models will automatically 

learn hierarchical features in raw images, a requirement that eliminates the need for manual feature engineering. An accuracy 

of 98.1% is impressive with ResNet-50, which has a longer inference time of 220 ms and a parameter number of 25.6 million. 

On the contrary, lightweight models like MobileNetV2 and SqueezeNet are faster in the inference process and of a very small 

size, which makes them more appropriate in resource-constrained situations. Nonetheless, deep learning models require a 

significant amount of computing resources and therefore tend to be effective only in real-time implementation on regular 
hardware. 

 

2.4. Edge Computing in Manufacturing 

In places where latency and bandwidth are of concern (e.g., using cloud-based inference), edge computing in 

manufacturing has also gained traction. In doing so, manufacturers can process data and draw inferences locally and in real-

time by trading on local edge servers, such as the NVIDIA Jetson, Google Coral, and Raspberry Pi, and thus decrease reliance 

on centralized infrastructure. Such platforms can host small AI models and provide sufficient computation to run neural 

networks locally, thereby reducing delays due to data transmission and making systems more responsive. An increase in data 

privacy and system reliability is also contributed to by an edge computing method, as important processes are no longer subject 

to network connectivity and outsourced servers. 

 

2.5. Research Gap 

It can be observed that although the accuracy of manufactured models has improved substantially and the scope of edge 

hardware has increased, a noticeable gap remains in optimising deep learning models for real-time, edge-based defect scouting. 

The current designs, although precise, are computationally expensive and not easily deployable on low-compute edge devices. 

Moreover, in comparison, most studies pay little attention to integration capabilities in real manufacturing systems, at least in 

terms of latency, energy consumption, and accuracy metrics. The unsolved gap aims to fill a gap between the gaps of regard 

for their research to develop and test the lightweight, optimized models with high detection accuracy and address the strict 

requirements of edge deployment conditions. 

 

3. Methodology 
3.1. System Overview 

The possible solution is the defect detection pipeline that is supposed to work efficiently on edge devices and has a well-

defined pipeline: image acquisition, preprocessing, model inference, which uses a quantized CNN, and the result output. [10-

14] all these stages serve a very important role in making the system fast, precise, and loved by the real-time industry. 

 

 
Figure 2: System Overview 

 

 Image Capture: It begins with capturing high-resolution photos of manufactured parts using a camera installed in the 

inspection line. The images play a crucial role, as they provide raw visual characteristics for identifying surface 

imperfections. In various environments, the system can incorporate illumination control to ensure consistent image 

quality across different light levels. 
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 Preprocessing: Preprocessing is necessary to enhance the quality of inputs and simplify the complexity of a model 

before feeding the images. The common steps involved in this process are resizing, normalisation, grayscale 

conversion (when necessary), and noise removal. Adequate preprocessing ensures the input to the CNN is 

homogeneous and conducive to robust feature extraction. 

 CNN Model (Quantised): For defect detection, a quantised Convolutional Neural Network (CNN) is implemented. 

The use of quantization allows pushing the model to a smaller size and fewer-compute-requirement by pinning 
floating-point weights on lower-bit configurations (e.g., INT8), and it is modeled perfectly to be delivered at the edge. 

CNN is used to process images to extract hierarchical features and localise anomalies or defects with high accuracy. 

 Inference & Output: In this final step, the image obtained will be subjected to the quantised CNN, and the model 

will make inferences to identify and label the flaws. The result, which includes the type of defect, location, or a basic 

pass/fail indication, is presented or relayed to the manufacturing control system. This ensures instant decisions, as in 

the case of a stoppage on the production line or marking of defective goods. 

 

3.2. Model Optimization 

We utilised MobileNetV2, a lightweight and high-performance CNN architecture, to ensure the effective delivery of real-

time capabilities on edge devices. To further enhance its suitability for low-resource environments, the model was optimised 

using quantisation and pruning techniques. These approaches significantly reduce memory accesses and inference time without 
compromising detection accuracy. 

 

 
Figure 3: Model Optimization 

 

 Quantization: The quantization technique consists of lowering the resolution of the weights and the activations of the 

model from 32-bit floating point to smaller bit representation values (generally 8-bit integers (INT8)). This change 
makes the model smaller and more time- and power-efficient, allowing it to execute more quickly and with reduced 

power dissipation, which is essential for embedded and edge devices. The INT8 quantization also allows the easy 

implementation on hardware accelerators such as the NVIDIA Jetson and Google Coral, with little effect on the 

accuracy of performance. 

 Pruning: In pruning, unnecessary or weaker connections and neurons are removed from the neural network. Removal 

of these components is, most often, a systematic process that removes the lower-weight components (or magnitude), 

making the entire model smaller and quicker in the inference process. The pruning not only diminishes the number of 

parameters present, but it also reduces the model's memory consumption and speeds up computation. Nevertheless, 

the model's predictive quality remains important. 

 

3.3. Mathematical Formulation 

We will consider a tensor that is the input image as 𝑋 This input is then passed through a chain of convolutional, 

activation, and pooling layers by the [15-18] Convolutional Neural Network (CNN) that can be expressed as a form of function 

𝑓, weights and biases and parameterized by 𝜃. In this way, output prediction 𝑌 is: 𝑌= f (X;𝑌    𝑓 𝑋 𝜃) summarises the 

hierarchical extraction and transformation of features of the CNN by describing the input space of raw data representing an 

image, and the resulting space representing the prediction space, which can be a class probability or a label of the defect that it 

identifies. These parameters are learned in the training process by the process of back propagation and optimize some loss 

function (𝑌^Y^ ), where 𝑌^Y^  is the ground truth. 

 
To implement this model effectively on edge devices, quantisation is employed. Quantization changes the model 

parameters and activations of 32-bit floating point (FP32) to 8-bit integer (INT8). In mathematics, the quantization of a 

floating-point value 𝑥 to an integer   is done with: 

 

 𝑌  𝑓    𝑋   𝜃   where s is a scaling factor, y is the zero-point, with the range of the float values being mapped to the 

integer range. During inference time, integer operations are also employed instead of floating-point operations, which greatly 

reduces the computational burden and memory cost. The approximated original function can then be drawn as the quantized 𝑓𝑞 

Quantization 

Pruning 
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of the original function. The quantized parameters are. It enables efficient real-time defect detection on edge hardware, 

incurring minimal accuracy loss. 

 

3.4. Data Flow and Handling 

The defect detection pipeline features a simplified data flow architecture that enables the use of real-time or edge 

capabilities. All steps in the image capture processing chain, from input to output signalling, are streamlined to be both fast and 
highly reliable, allowing for easy integration into an industrial automation system. 

 

 
Figure 4: Data Flow and Handling 

 

 Capture: The system begins at the point of acquiring images, where an industrial-grade camera captures images of 

720p (1280 x 720) pixels along the production line. With this resolution, a reasonable amount of visual detail is 
available to detect anomalies or flaws on the surface or structure. Still, it generates too much data to be effectively 

utilised in downstream analytics. A sensor, typically a timing device, usually triggers the camera to capture precise 

images of moving parts. 

 Resize: The obtained high-resolution picture is resized to 224*224 pixels after being captured. This resizing step 

ensures that the input dimensions match the expected input shape of the MobileNetV2 model, which is optimised at 

this resolution. Additionally, by scaling down the image, the scaled model reduces the computational load, enabling it 

to infer faster with a significant reduction in important visual information. 

 Normalise: The image pixel values are normalised to a [0, 1] range before feeding the image into the model; this is 

ensured by dividing the pixel intensity by 255. This is a conventional normalisation method used to enhance the 

convergence and stability of the model during inference, as well as to distribute the inputs uniformly. It is also in 

agreement with the preprocessing expectations experienced during the model's training period. 

 Inference: The quantised real-time inference MobileNetV2 model takes the preprocessed image as its source. 

The model is used to analyse the image, identifying defects by examining patterns learned through past experience, 

and produces a classification result or likelihood of defect existence. This action is intended to be fulfilled in 

milliseconds, making it optimal in terms of latency in a high-throughput setting. 

 Output: Lastly, the system will convey the prediction output, typically in the form of a pass/fail message, to a 

Programmable Logic Controller (PLC). The PLC uses this information to make real-time decisions, such as refusing a 

defective item or halting the production line to investigate the matter further. Such a closed-loop feedback results in 

quality control and operational effectiveness. 

 

3.5. Evaluation Metrics 

A combination of quantitative measures is used to comprehensively assess the performance of the defect detection system. 
These functions not only help measure the effectiveness of the classification performed by the model, but also its efficiency 

when working in real-time, which is very important when building on the edge in the defined manufacturing conditions. 

 Accuracy: Accuracy is a metric which specifies the overall correctness of the model predictions. It can be described 

as the proportion of accurately predicted samples (including both defective and non-defective) to the total number of 

samples. Although it provides an overview of performance, accuracy can be misleading when dealing with 

imbalanced datasets, particularly when one of the classes is highly predominant. Therefore, metrics such as precision 

and recall are added to it to make it more specific. 

 Precision: Precision measures the number of items correctly indicated as defective to all items labelled as incorrect 

by the model. High accuracy implies that the system will have minimal instances of false positives, which is 

particularly relevant in manufacturing, where unwarranted rejection of good products can occur due to low accuracy. 

Precision =: 
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Figure 5: Evaluation Metrics 

 

 Recall: Recall or sensitivity is the capacity of the model to find all the actual defective objects correctly. Recall of 

high level will mean that not so many defective parts will escape detection, and the chance of defective products 

reaching customers will be reduced. The formula of recall is: 

 
 Time Inference (ms): The time during which the model processes one image and gives an output is called inference 

time. In milliseconds, it is a key indicator of systems that need to behave in real-time. Shorter inferences lead to 

increased productivity on the manufacturing line and quicker decision-making. 

 Throughput (FPS): The speed at which the model is illustrated, throughput is specified in Frames Per Second (FPS). 

It is an indication of the system's capability to handle high-speed production environments. The value of the FPS 

should be high so that the system can follow speedy moving components without creating bottlenecks and delays. 

 

4. Case Study / Evaluation 
4.1. Experimental Setup 

An experimental environment controlled by an edge computing platform was established to measure the performance of 

the proposed lightweight defect detection system. A single-board computer, specifically the NVIDIA Jetson Nano, was chosen 

for implementation as it is regularly used and offers the benefits of its artificial intelligence capabilities and low energy 

consumption. It features a four-core ARM Cortex-A57 processor, a 128-core Maxwell graphics processor, and 4 Gigabytes of 

LPDDR4 memory. This configuration is representative of resource-constrained applications in an industrial setup where these 

resources include power, memory and computing capabilities. The objective was to see whether quantized MobileNetV2 

model could be deployed to perform accurate inference and real-time inference within such a constrained environment. 

Training and evaluation were conducted using a proprietary metal defect dataset curated with the specific intention of 

representing actual manufacturing conditions. The training set comprises 5,000 labelled images gathered through a 

combination of industrial inspection lines and simulations. The photographs were taken with a high-resolution camera at 720p 
resolution and featured various lighting, surfaces, and conditions to enhance the generalizability of the models. To achieve a 

robust assessment, the dataset was divided into training (70%), validation (15%), and testing (15%) sets. These images were 

labelled with any one of the following: Crack, Dent, Scratch and No Defect. These are typical surface defect types of metal 

pieces applied to cars, aviation, and building constructions. The annotations were done by manual labeling to maintain 

accuracy in labeling, and the method to overcome skewed distributions was by the technique of class-balancing strategy. 

During preprocessing, the images were resized to 224x224 pixels and normalised to the [0, 1] range, following the required 

inputs of MobileNetV2. The experimental setup served more than one purpose, as it was intended to evaluate not only the 

performance of the classification, but also its feasibility of deployment on the Jetson Nano. Measures of performance like 

accuracy, inference time and throughput were logged in order to assess the extent to which the system addresses the two 

objectives of demanding high accuracy and being responsive in real time on edge devices. 

 

4.2. Performance Metrics 

To consider the effectiveness and efficiency of the optimized defect detection model used on the NVIDIA Jetson Nano, 

multiple performance indicators were tracked. These measures show the success of the model with regard to both accuracy in 

classification and the ability to work in real-time in resource-constrained conditions. 

 

Table 1: Performance Metrics 

Metric Value (%) 

Accuracy 97.6% 

Precision 96.8% 
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Recall 97.2% 

Inference Time 3.3% 

Throughput (FPS) 3.0% 

 

 
Figure 6: Graph representing Performance Metrics 

 

 Accuracy – 97.6%: Accuracy is measured as the percentage of correctly classified samples amongst all of the 

samples classified. An accuracy rate of 97.6 per cent indicates that the model is reliable in detecting various types of 

defects, including cracks, dents, scratches, and the absence of defects. The high level of accuracy shows that it is a 

well-generalizing model even when performing on low-power device hardware. 

 Precision – 96.8%: Precision is a value that determines how accurately the model has classified defective objects and 

did not identify non-defective ones as such. The false positive rate of the model is at 3.2%, providing a 96.8% 

accuracy rate, which makes sure that only genuinely defective products are listed as such, either to be looked through 

again or discarded. This plays an important role in the manufacturing industry, where finished goods can be produced. 

 Recall – 97.2%: Recall is the ability of the model to identify all the real defective items. A 97.2 percent recall 

indicates that the model is very efficient in reducing false negatives, where a defective item could be incorrectly 
labeled as one that is defect-free. This will help us identify faulty parts that are not suitable for advancement in the 

production process. 

 Inference Time -3.3 %: In percentage to a 100 ms baseline, the inference time of 3.3% gives a value of around 30 

milliseconds per image. Such low latency enables this model to operate in real-time, ensuring it does not get left 

behind by fast assembly lines. 

 Throughput (FPS) – 3.0%: The system has a throughput of about 30 Frames Per Second (FPS) translated herein as 

3.0 percent to a supposed benchmark of 1000 FPS. This rate of flow is enough to do real time inspection in most 

factory setups and the system will be able to analyze more than one image per second with no/less loss of 

performance. 

 

4.3. Integration Aspects 

An essential aspect of implementing an AI-driven defect detection system in such an industrial application is ensuring 
compatibility with existing automation and monitoring systems. Under the proposed system, the system response is directed 

towards a Programmable Logic Controller (PLC) via General Purpose Input/Output (GPIO) pins designed on the NVIDIA 

Jetson Nano. The GPIO interface enables real-time, low-latency communication between the edge AI component and the PLC. 

Depending on the inference made by the model, e.g., detecting a defect or a "pass" condition, a high or low digital signal is 

transmitted to the production line through GPIO, and a corresponding action is taken. For example, a mechanical arm can be 

used to reject defective parts when a signal indicates a failure, and the mechanical arm that disposes of the rejected part is 

enabled. Conversely, when the signal indicates a pass, the item can be allowed to proceed to the next manufacturing step. 

Besides using physical signalling, the system can be remotely monitored and alerted via MQTT (Message Queuing Telemetry 

Transport), a lightweight publish-subscribe messaging protocol suitable for exposure to Industrial Internet of Things (IIoT) 

solutions. When identifying a defect, the Jetson Nano broadcasts a canonical MQTT message with metadata (including defect 

type, time of identification, and potentially the image ID or localisation) to the shared MQTT broker. Subscriptions are then 
made to these messages via a dashboard application, which may be hosted on a local or cloud-based server. The dashboard 

provides supervisors and quality control engineers with real-time alerts, defect statistics, and trends. The two-fold combination 
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of physical output through GPIO and digital messaging through MQTT provides both direct line-level control and a more 

holistic view of operations, enabling data-informed decision-making and proactive improvements in manufacturing quality 

assurance procedures. 

 

5. Results and Discussion 
5.1. Key Findings 

The experimental outcomes of the proposed defect detection system reveal several key findings that underscore its 

practical significance in industrial applications. To begin with, the optimized MobileNetV2 model proved to be accurate in 

classification with accuracy of 97.6% over a self-made metal defect dataset. This confirms that certain defects in porous 

materials, such as cracks, dents, and scratches, can be reliably detected by the model, and it exhibits very good generalisation 

capability regardless of surface texture and lighting conditions. However, MobileNetV2 exhibited similar performance to much 

larger and complicated models despite its lightweight architecture, owing to proper quantization and pruning procedures. The 

other top attainment is the capacity of the system to conduct real-time inference, where the processing speed occurs at 30 
frames per second (FPS) with an average inference time of 30 milliseconds per image on the NVIDIA Jetson Nano. This rate 

of throughput guarantees the ability of the system to gently match rapid production lines with no loads. Besides the rates of 

accuracy and speed, the given solution performed well in terms of energy management and thermal management. The Jetson 

Nano, which is listed for low power consumption, functioned well under a permanent load and produced minimal heat. It also 

passed hours of continuous testing without crashing or requiring any cooling or thermal throttling. This low-power character 

profile is especially advantageous to use in surroundings where energy productivity and compact structures are crucial. 

Collectively, these results affirm that the identified system can achieve a reasonable trade-off between accuracy, quickness, 

and resource utilization, thus being a good candidate to implement on the edges of smart manufacturing production. It 

empowers manufacturers to apply a quality control based on AI that does not cost them through expensive hardware or 

hardware-reliant infrastructure required to stay within the cloud, which is also in line with the larger aspirations of Industry 

4.0. 

 

5.2. Limitations 

Although the proposed system for defect detection demonstrates high performance in real-time and edge-based solutions, 

several limitations should be acknowledged. Among the main drawbacks is the system's sensitivity to changes in light when 

taking pictures. Even though the model is trained on a mixed set of data with various lighting conditions, it will not perform 

well under extreme lighting conditions, such as shadows, glare, or uneven lighting on the production floor, which may result in 

misclassification. For example, glare may conceal small scratches or cracks, and uneven lighting could make them perceive the 

surface textures as flaws. This constraint points to the need to be maintained in the different lighting conditions in the 

deployment environment so that this performance is comparable. The fact that the model relies on the training dataset is 

another significant limitation, particularly when it comes to detecting new or unknown types of defects. The existing model has 

been trained on four preselected classes: crack, dent, scratch, and no defect. In case new defect types may be introduced into 

the environment, as well as in case of corrosion, discolouration, or new structural abnormalities, the model most likely cannot 
identify them correctly unless collecting more data and retraining occurs. This is done by annotating fresh images, retraining 

the neural network, and evaluating its performance, which is time-consuming, involves domain expertise, and requires 

computational resources. This makes the system less flexible in changing environments where new types of defects emerge 

regularly or change with time. The drawbacks of these limitations do not in any way denounce the practicality of the system, 

but rather propose areas that need future enhancement. Some of these issues may be addressed by multimodal adaptive 

learning methods, such as transfer learning or continual learning, and more sophisticated preprocessing pipelines that can align 

lighting differences. These limitations would also improve the strength and flexibility of the system further, which would make 

it even more appropriate to implement in real-world industries. 

 

5.3. Broader Applications 

Although the main application of this system is targeted at discovering defects in the industry, the overall concept of 
lightweight deep learning models with an eye toward deployment on the edge has immense potential in other fields of interest. 

Autonomous agricultural inspection is a potential area. Drones or mobile robots with Edge AI devices can have cameras to 

inspect crops in real-time to identify disease, pest, or nutrient deficiency. Similar to the ways in which defects on metal 

surfaces are detected, these systems can examine leaf discolouration, unusual growth patterns, or structural damage in plants 

through the use of the same type of CNN-based inference. This will allow the farmers to intervene at the right time and 

subsequently raise a harvest, cut down on the application of chemicals, and still be in remote regions with poor connectivity. 

Another influential use is in real-time monitoring of patients in healthcare facilities. Edge-based systems have the potential to 

process video feeds or sensor data to track patients for critical changes, including abnormal movement, posture, or breathing. 

For example, the models will be able to detect falls, seizures, and dyspnea in a patient. By installing such systems in hospitals, 

elderly care centers, or even at home, one can constantly monitor the equipment without connecting to cloud servers, therefore, 

not only guaranteeing privacy but also significantly lower latency and faster reaction time in critical situations. The third 

pertinent domain is smart traffic monitoring. Edge AI solutions may be introduced to the road, traffic lights, or even 
surveillance cameras to detect accidents, illegal switching of lanes, or traffic jams in real-time. The lightweight models, such as 
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MobileNetV2, are fast to process on devices and do not necessarily require extensive computational infrastructure. Such 

systems have the potential to facilitate the real-time creation of alerts and analytics, which could assist in enhancing road 

traffic flow, improving road safety, and facilitating autonomous traffic management systems. In short, the fundamental 

principle presented in this paper can be applied to other fields that require the fast and local execution of decisions with limited 

computing resources. 

 

6. Conclusion and Future Work 
This paper proposes a potential application for real-time defect detection based on a deployable and lightweight computer 

vision pipeline, specifically tailored to the industrial setting. The system became capable of classifying the input in real-time 

with high accuracy using the optimised version of the MobileNetV2 architecture, along with quantisation and pruning 

methods, on a resource-constrained device like the NVIDIA Jetson Nano. Modular architecture with distinct and well-defined 

stages, including image capture, preprocessing, model inference, and output handling, will provide not only scalability but also 

the simplicity of integration into industrial control systems. The throughput of 30 FPS and the accuracy of 97.6% ensure 
achieving the twin goals of reliability and responsiveness; hence, within the scope of on-site implementation, the system does 

not require a constant connection to the cloud. Moreover, its networking with PLCs via GPIO and live warning via MQTT 

qualifies it as a highly purposeful part of smart manufacturing processes within the Industry 4.0 frame. 

 

Although the system performs very well, some limitations can be considered areas for improvement in the future. The 

latter avenue is to continue augmenting its ambitions by using transformer-based vision models (e.g. Vision Transformers 

(ViTs) or CNN-transformer architectures). These models offer improved contextual and potentially better performance in 

complex or cluttered visual situations. Dynamic defect category expansion with few-shot learning is another important aspect 

that can be developed, as this approach enables the system to identify new types of defects with minimal re-training, allowing 

it to be more flexible in response to a changing production regime. Additionally, the edge system could be coupled with cloud 

infrastructure, enabling hybrid analytics to perform feature extraction and model training in the cloud, with inference on the 
edge, thereby trading off performance for scale. 

 

Additionally, synthetic data generation methods can be used to generate synthetic data. Alternatively, one can look into 

using GANs (Generative Adversarial Networks) to counter the problem of rare defect samples. Such a strategy may increase 

the generalization in the model by expanding the training data with plausible alternatives of rare defects. All these future 

directions, combined, will work towards ensuring that the system not only becomes smarter and more flexible but also more 

independent and self-reliant in industrial manufacturing environments. Further research and development in these domains will 

further increase the applicability of edge AI in industrial quality assurance, among other areas. 
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