* *
* A4 *x International Journal of Al, BigData, Computational and Management Studies
**\ ** Noble Scholar Research Group | Volume 3, Issue 4, PP. 49-59, 2022

*

ISSN: 3050-9416 | https://doi.org/10.63282/3050-9416.1JAIBDCMS-V314P106

Empowering Cloud Security with Artificial
Intelligence: Detecting Threats Using Advanced
Machine learning Technologies

Varun Bitkuri', Raghuvaran Kendyala?, Jagan Kurma®, Jaya Vardhani Mamidala*, Sunil Jacob Enokkaren®, Avinash Attipalli®
IStratford University ,Software Engineer.

2University of Illinois at Springfield, Department of Computer Science.

SChristian Brothers University, Computer Information Systems.

4University of Central Missouri, Department of Computer Science.

°ADP, Solution Architect.

®University of Bridgeport, Department of Computer Science.

Abstract: The high growth rate of cloud computing where protection of digital assets due to the nature of the threat is of
paramount importance especially in reducing cyber threats such as Distributed Denial-of-Service (DDoS) attacks. In the paper,
| have suggested an intelligent framework of threat detection based on the Random Forest (RF) model to improve cloud
security. This model was trained and also tested on the CIC-DD0S2019 dataset, with the capabilities of ensemble learning used
to attain high levels of classification. In the experiment, the RF model attained an 99.97% accuracy with precision, recall of
99.97%, and an F1-score of 99.98 %. The better performance of the proposed approach is proven by making a comparative
analysis with other models, Gradient Boosting (96.7%), Logistic Regression (95.0%), Support Vector Machine (94.32%). The
model robustness is also confirmed by ROC curves, confusion matrix analysis and training-validation trends. Such results
define Random Forest as an exceptionally efficient and predictable framework when it comes to countering changing cyber
risks in cloud environments, with promise of both scalability and real-time effectiveness when implemented into practice.

Keywords: Cloud Security, DDoS Detection, Random Forest, Machine Learning, CICDD0S2019 Dataset, Threat Detection,
Cybersecurity.

1. Introduction

The game has changed with cloud computing offering businesses and organizations an infrastructure that is adaptable,
affordable and expandable. The cloud infrastructure has noted major increase in productivity and operational agility whereby
organizations can implement high-quality applications, services provision through Internet with very low investment cost up-
front [1] but a disturbing factor is that alongside the mentioned benefits is the aspect of cloud data security and services security.
The cloud landscape has a large amount of sensitive data, and as a result of shared and, in many cases, more complicated
infrastructure, there is a high level of opportunity at the disposal of a potential cybercriminal [2][3]. Traditional security controls
are always rule-driven and usually reactive and thus it would not be able to keep up with the pace and the level of intricacy you
can find in a cloud environment [4][5].

These new threats, which are characterized as being highly sophisticated (i.e., hard to detect using traditional tools like
firewalls, antivirus software, and simple encryption techniques although, as is shown in the context of current attacks and their
countermeasures, these basic tools have yet to become obsolete), such as zero-days, advanced persistent threats (APTs), and
insider threats are basically unrecognizable with traditional tools, due to the fact they were previously undetectable using legacy
security measures such as firewalls and anti-virus software, along with basic forms of encryption [6]. a security measure that
Traffic volume of cloud and event logging is also too voluminous even to be tracked by human and too dynamic to be picked by
rule-based systems in real-time [7]. To overcome such limitations, numerous cloud security products are currently including
Artificial Intelligence (Al) and ML functionalities in their products.

The application of Al and ML has become an important resource within cloud security. Their inclusion in cybersecurity
architectures is a momentous change [8], that allows systems to be more responsive, intelligent and autonomous in noting threats
and mitigating their effects, and are fantastic at operating large data sets, spotting anomalies and deriving threats with much
more accuracy and quickness than before [9]. Using behaviour analysis, adaptive learning, anomaly detection and real-time
threat detection, these technologies enhance cloud security [10]. Al and ML are capable of effectively increasing the resilience
of clouds as it allow creating automatic threat detectors and response systems. The combination of cloud computing and the
most advanced machine learning technologies is a hard-to-beat approach to securing digital assets in a rapidly hostile cyber
environment. This comes in help especially in detecting previously unknown or zero-day attacks before they cause any serious
damage.
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1.1. Motivation and Contribution
As cloud computing keeps changing the way data is stored and provided, it is also creating severe security risks such as DoS and
especially DDoS attacks. Conventional security systems cannot match the pace of these threats that are changing with every
movement, scale, and complexity. The study is inspired by the increase in the need to have smarter, adaptive, and data-driven
security systems that can identify threats early and with a lot of accuracy. Al, and especially ML offer a robust basis to automate
the process of threat detection, learning data patterns, and improving the overall resilience of clouds in general. This study will
aim to develop an effective detecting system capable of identifying complex attack structures and responding to cloud
environments faster using machine learning models. The major contributions associated with this study include:
¢ Employing CICDD0S2019 dataset, which is a realistic and rich dataset, consisting of different DDoS attack vectors, to
develop a threat detection framework.
e Performing systematic data pre-processing, including data cleaning, feature encoding, feature scaling, feature selection,
and handling class imbalance to improve model quality and generalizability.
e Implementing a Random Forest classifier, known for its interpretability and high performance in classification tasks, to
detect potential security threats.
o Demonstrated model convergence and generalization through training/validation accuracy and loss plots, indicating
minimal overfitting.
e Testing the model based on typical measures of performance- F1-score, recall, accuracy, and precision to present a
complete overview of the effectiveness of the model.

1.2. Novelty of the Paper

The novelty lies in the integration of an RF classifier with a rigorously optimized pre-processing pipeline, including
ADASYN-based resampling and hybrid Genetic-Grasshopper feature selection, tailored for high-dimensional DDoS detection.
This approach ensures balanced learning, minimizes model complexity, and enhances interpretability. By leveraging the
CICDD0S2019 dataset and refining the input representation, the study presents a threat detection method that is both highly
accurate and broadly applicable, outperforming traditional models and providing a scalable solution for real-world cloud security
challenges.

1.3. Organization of the Paper

The outline of the paper is as follows In Section I, the relevant literature on cloud threat detection using Al is reviewed.
Section 111 describes the approach and ML models that were utilised. Experimental results and evaluations are presented in
Section V. Section V provides a summary, a discussion of limits, and suggestions for future research.

2. Literature Review

This section discusses the most recent developments in cloud security by employing the use of Al, or specifically ML
technologies that have been designed to improve threat detection, vulnerability identification, and more accurately predict
threats, and respond in real time to security incidents. Some of the major works consulted are as follows:

Bharati and Tamane (2020) the capacity to detect SQL injection in cloud-based apps using machine learning protocols. The
research is carried out by training classifiers to distinguish between harmful and benign payloads, using sets of both types of
data. Its findings, which showed a detection rate of over 98%, show that ML is crucial in data protection and defence against
SQL injections [11]. Tripathy, Gohil and Halabi (2020) There has been research into the possibility of using machine learning to
identify SQL injection in software as a service applications. The work is meant to separate malicious and non-malicious target
payloads, by going off classifiers trained on divergent malicious and non-malicious payloads. The results show that machine
learning has a detection rate of over 98%, making it crucial for data protection and defence against SQL injection. This research
also proves that various ML models may be compared for their efficacy in identifying SQL injection attacks [12].

Abusitta et al. (2019) introduce a collaborative IDS, which is one of the machine learning-based strategies, and incorporates
a Denoising Autoencoder (DA) in order to effectively use the records of the past feedback to enable proactive decisions. After
being developed and trained on a real-life dataset, the model demonstrated the highest accuracy of 95% in the GPU-enabled
TensorFlow. Through this, inefficiencies and time loss incorporated in cooperative IDS policies are eliminated and, therefore,
the policies are more feasible and accountable in identifying advanced attacks [13]. Garg et al. (2019) utilise a hybrid strategy
combining convolutional neural networks (CNNs) and grey wolf optimisation (GWO) to identify anomalies in networks.
Different from one another, the Improved-GWO (ImGWO) and Improved-CNN (ImMCNN) models are best suited for different
tasks: classification and selection, respectively. Additionally, compared to other state-of-the-art models, this one has the best
accuracy (3.25%), detection rate (4.08%), FPR (3.62%), and F-score (8.52%) [14].

Parampottupadam and Moldovann (2018) investigated network intrusion detection using DL in real-time. They built a
cloud-based system that uses binomial as its basis for model proof of method. The study found that appropriate selection of
deep learning library was critical in real-time applications after comparing the H20 and DeepLearning4J libraries with other ML
models. On the NSL-KDD training dataset, H2O models achieved an accuracy of over 99.5%, while on the testing dataset, they
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only managed 83% accuracy [15]. Gao et al. (2018) introduce a robotic system that operates in the cloud that can identify
network intrusions using an ensemble technique that combines fuzzy logic with semi-supervised fuzzy learning. The method
constructs an ensemble-based system using supervised and unsupervised parts; it learns from labelled data and employs an
analytical methodology based on fog. On the NSL-KDD dataset, the technique outperforms the state-of-the-art model with an
accuracy of 84.54% and 71.29%, respectively. This approach gets rid of the issue of finding the latest attack patterns and data
security concerns with cloud-based robotic systems [16].

Table | gives an overview summary of the main work on optimizing cloud security systems on the basis of artificial
intelligence, describes the major contributions in each of the employed models, gives out the limitations of these works, and
indicates where future research in the area of intelligent cloud threat arbitration is expected to head.

Table 1: Summary of Recent Studies Based on Cloud Security and Threat Detection

References Approach Dataset Main Contributions Limitations Future Work
Bharati and Machine CSE-CIC- Developed an ML- Bharati and Machine
Tamane (2020) Learning-based IDS-2018 based anomaly Tamane, 2020 Learning-based
IDS using detection system IDS using
Random Forest Random Forest
classifier to detect classifier to
anomalies detect anomalies
rather than
signature-based
misuse detection
Tripathy, Gohil ML-based Malicious & | High accuracy (>98%) | Focuses solely on | Extend to other
and Halabi (2020) classifiers for benign SQL in detecting SQL SQL injection; web-based
SQL Injection payloads injection at app level lacks scalability attacks, test in
Detection analysis multi-tenant
SaaS
environments
Abusitta et al. Denoising Real-life IDS Enables proactive Delay in Incorporate
(2019) Autoencoder in feedback decision-making with aggregation, reinforcement
Cooperative IDS dataset partial 1DS feedback, partial feedback learning, real-
95% detection dependency time feedback
accuracy prediction
optimization
Garg et al. (2019) Hybrid: DARPA’98, Improved anomaly Evaluation Apply model to
Improved-GWO + KDD’99, detection rate, limited to dynamic cloud
CNN (ImGWO- Synthetic accuracy, and F-score benchmark environments,
IMCNN) via hybrid datasets, needs reduce
optimization validation in real- computational
world network complexity
traffic
Parampottupadam developed a NSL-KDD — Demonstrated high Accuracy Extend
and Moldovann cloud-based Improved performance of deep | dropped to ~83% evaluation to
(2018) prototype for real- version of learning models, on test data, real-time cloud
time binomial and | KDDCUP-99 | especially H20-based indicating traffic data,
multinomial (>99.5% accuracy on generalization study the
classification training data) issues scalability of
utilizing deep deep learning
learning. libraries in
production
environments
Gao et al. (2018) Fuzziness-based NSL-KDD Combines strengths of Accuracy on Improve
semi-supervised (KDDTest+, supervised and advanced test sets | generalization to
ensemble learning | KDDTest-21) unsupervised NIDS relatively low zero-day attacks,
models, removes (71.29%) test with
noisy samples and evolving cloud
achieves Accuracy: robotic systems
84.54% (KDDTest+),
71.29% (KDDTest-
21)

51




Varun Bitkuri et al. / IJAIBDCMS 3(4), 49-59, 2022

3. Methodology

The research methodology will start with the data pre-processing, during which any inconsistencies in data are cleaned up. The
numerical values of the categorical values are transformed into numerical format by feature encoding. The feature distributions are
then scaled to achieve uniformity. They select features that are relevant to their problem, and then they employ resampling
techniques to fix the data imbalance while keeping important qualities. It is from this pre-processed dataset that the training and
testing sets are constructed. They utilise an RF classifier because it excels at dealing with high-dimensional data and resilient
nonlinear interactions. The model is evaluated using the test set following its training on the training set. When evaluating
performance, standard metrics like recall, accuracy, precision, and F1-score are utilised. Figure 1 shows how artificial intelligence
may strengthen cybersecurity by ensuring effective and dependable DDoS attack detection in cloud settings through a methodical
process.

Monitoring |
System Coliction Of Data

PreProcessing | Train Dataset |
Of Data \ 3
Intrusion | | Modelling Of
Recognition Intrusions
Alerm Report

Figure 1: Proposed Flowchart for Threat Detection

3.1. Dataset Description

The Canadian Institute for Cybersecurity created the CICDD0S2019 dataset to train algorithms for identifying contemporary
DDosS attacks. It includes both benign traffic and recent attack types conducted via TCP/UDP-based protocols, offering a realistic
representation of real-world scenarios. The attacks are categorized into reflection-based (e.g., TFTP, LDAP, DNS) and exploitation-
based (e.g., SYN, UDP, WebDDoS), totaling twelve classes and 88 features. This classification helps in analyzing and modeling
different DDoS behaviors effectively. The following is the class distribution by attack category in Figure 2 of the dataset.

CIC-DDo52019 Class Distribution by Attack Category
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Figure 2: Class Distribution By Attack Category of CIC-Ddos2019 Data
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In Figure 2, the x-axis lists various network protocols or attack types such as TFTP, LDAP, DNS, and UDP, alongside '‘Benign'
traffic. The y-axis represents the count. Most categories, especially those related to 'Reflection’ and 'Exploitation’ attacks, show high
counts approaching 50,000, while 'Benign' traffic is considerably lower, around 16,000. This visualization effectively displays the
distribution and prevalence of various attack types within the dataset.

il 13 314 3
151 1% )

gure 3: Correlation Heatmap of CIC-DD0S2019 Data

Figure 3 is a correlation heatmap, visually representing the relationships between numerous variables. Different shades of
orange and teal indicate the strength and direction (positive or negative) of correlations, respectively. Darker colors signify stronger
relationships. The diagonal line shows perfect self-correlation.

3.2. Data Preprocessing
Data pre-processing involves transforming raw data into a more manageable format for data science tasks like data mining and
machine learning. For feature selection to work, machine learning algorithms require clean, numerical inputs, which is why data pre-
processing is covered in this section. In order to do this, the following steps are taken:
o Data Cleaning: It involves finding and fixing inaccurate, lacking, irrelevant, or incomplete data by substituting the mean of
the related attribute for missing or NaN values. A large amount of work goes into making sure the input data is accurate and
clean because bad data can lead to biased results, increased error rates and less accuracy in a model.

3.3. Feature Encoding

There are several columns in the input datasets that have both category and numerical values. Feature encoding is the process of
providing numerical representations to data that is not numerical in nature. Although each has advantages and disadvantages, one-hot
encoding and label encoding are two common methods for doing this. Though it may be more effective, one-hot encoding greatly
increases the complexity of the features. Label encoding was chosen for this study since it worked well [17]. Combining one-hot
encoding with label encoding would provide more features and make the dataset bigger, which would use more resources. Label
encoding alone giving each unique text of a feature a unique number starting at 0 works better because reducing the number of
characteristics is the aim.

3.4. Feature Scaling

Scaling the dataset's characteristics will help to prevent any one feature from having an excessive impact on the model because
of its size, particularly considering how diverse the dataset is. Mini-Max In order to standardise the characteristics to a certain range,
scaling was typically utilised. Here, each attribute was standardised by removing its lowest value and dividing by the range to ensure
that each contributed equally to the final projection [18]. Parameters that need to be inside a certain range can benefit from this
method, which is commonly employed when the distribution is non-Gaussian. The min-max scaling was represented in Equation (1)

X=Xmi
Xscaled = T 1)
Xmax~Xmin

Where, respectively, x,,;, and x,,,,at the feature's minimum and maximum values.
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3.5. Feature Selection

Feature selection aims to increase classification performance by identifying the best features, cutting down on training time, and
improving accuracy. They do this by using a fitness function that is optimised using a hybrid Genetic-Grasshopper algorithm, which
strikes a compromise between maximising accuracy and minimising characteristics. The Grasshopper Optimization Algorithm
(GOA) mimics swarm behaviour for efficient global search, while the Genetic Algorithm (GA) applies evolutionary operators to
refine solutions. Together, they effectively select feature subsets that enhance classification accuracy with fewer features. Equation
(2) represents the calculation of feature selection:

F = max (Acc + we (1 - i—i)) 2

Where the length of the chosen features is denoted by F;, the accuracy by Acc, the weight factor by wy , and the total number of
features by F,. The weight factor's value being near to one indicates that both the accuracy improvement and feature minimisation
objectives are seen as being equally significant.

3.6. Handling Data Imbalance

Network intrusion detection is just one of many real-world machine learning applications where imbalanced datasets pose a big
difficulty. Classifier performance may suffer as a result of imbalance, particularly in extremely imbalanced datasets involving
minority threat categories. To get around this obstacle, two common methods are used: oversampling. The oversampling method
replicates instances or generates synthetic samples until all minority classes are represented equally. ADASYN, or Adaptive
Synthetic Sampling Approach, addresses imbalance in machine learning datasets by focusing on the minority class [19]. ADASYN
uses k-nearest neighbor technique to produce synthetic data points and analyses minority class instance density. The synthetic data
generation mechanism prioritizes instances in low-density zones, showing minority under-representation. Thus, giving the model a
more balanced representation improves classification performance and helps it learn from under-represented cases.

3.7. Data Splitting
In this analysis, the datasets are split into two separate sections with a ratio of 75/25. While 75% of the data is used for model
training, 25% is reserved for performance testing and verification.

3.8. Propose Random Forest Classifier (RFC)

The RFC is a well-proven ensemble prediction method that employs many decision trees to arrive at its final prediction. It has
demonstrated effectiveness in various regression and classification scenarios. When building the decision tree, randomly selecting
data nodes also improves the classifier's overall performance. Success in classification is largely influenced by the overall number of
trees and leaves, since the decision tree partitions the feature space into L regions representing RL for a total of L leaves. [20].
Decision trees employ this feature space to predict their final output, which can be expressed mathematically as Equations (3) and
(4). The majority vote of the trees determines the ultimate expected outcome. Since tweaking yields optimal performance in the
evaluation step, the total number of leaves and trees are the two most important RFC hyperparameters [21]. Careful consideration
should be given to the selection of these parameters, as beyond a certain point, further increases in their values further add
computing complexity.

f() = Bk constant, * [1(x,R,) ©)
MG, R,) = {é olt]icl;r\ii[selé “)

In which the input space is partitioned into L parts R;, Each one of which is related to a fixed value. This measure is then
predicted as a sum of these constants times an indicator function [T(x, R,) = 1 explanantie x is inside a region R, and 0 otherwise.

3.9. Performance Measurement Parameters

This section explains the principal metrics that help to evaluate the activity of the model. Such measures will permit meaningful
comparison and confirmation of results in providing information concerning the accuracy of the model, consistency of the model,
and overall efficacy of the model. It is needed to define main terms before demonstrating the metrics of evaluation when introducing
it:

TP (True Positive): The quantity of information that is useful in terms of its accuracy and possible applications.

FP (False Positive): An amount of data with both positive and negative predicted values.

FN (False Negative): A large number of data that have negative actual measure along with a positive expected measure.
TN (True Negative): An amount of data with a negative actual value in addition to a negative anticipated value.
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The performance of the model can be measured with the following metrics:
3.9.1. Accuracy

The usefulness of accuracy as an evaluation metric depends on the consistency of the datasets and the near-equalities of the false
positive and false negative values [22]. A classifier's accuracy is determined by how effectively it can predict the data points, as
Equation (5) illustrates.

TP+TN
Accuracy =

TP+FN+FP+TN ®)
3.9.2. Precision

The accuracy can be described as the proportion of predicted positive observations that genuinely materialised through accurate
prediction of positive observations. The form in percentage terms is provided by Equation (6).

TP ( 6)

TP+FP

Precision =

3.9.3. Recall
Equation. (7) shows "recall," which is the fraction of positive observations projected to be true out of all the real class

observations.
TP

TP+FN

Recall(Rc) = )
3.9.4. F1-score
The F1-score, which is the harmonic mean of recall and precision, is a balanced assessment of the model's accuracy and reliability

[23]. It provides a single measure that encompasses both characteristics and is specified in Equation (8) as:

PrecisionxRecall
FlSCOTe(F1)=2X,,— (8)
Precision+Recall

3.9.5. Receiver Operating Characteristic (ROC) Curve

The sensitivity and false positive rates at various thresholds can be seen graphically in a ROC curve. The model's overall
performance may be measured by looking at the area under the curve (AUC), which is defined in Equation (9). A number closer to 1
implies higher performance.

AUC = [, TPR(FPR)A(FPR) 9)
TPR and FPR are used here.

3.9.6. Loss
The categorical cross-entropy loss function (in Equation 10), which lends itself to multi-class classification task of our problem.
To reduce the loss, the optimizer Adam is applied to specify the parameters of the model by iteration and improve the results.

L=-Y,ylog(p) (10)

Where y;Regarding the actual labels, and p;He labels predicted by the model.

4. Result Analysis and Discussion

This paper explores the use of leading-edge ML methods to strengthen cloud security by discovering threats due to the
application of intelligent algorithms. Specifically, an RF model was employed to perform threat detection tasks, utilizing the
ensemble learning feature to achieve improved classification results. The experimental evaluations were carried out using the Python
language and the Google Colab Pro environment, which gives users access to a robust computing framework with 25 GB of RAM.
Numerous libraries, including Scikit-learn, helped with the model's training and assessment. The RF model showed an exceptional
accuracy rate of 99.97%, as shown in Table I, indicating its precision and reliability in identifying security concerns. With a 99.97
percent accuracy and a 99.97 percent recall, the model is very capable of identifying threats and has a very low FPR. The respective
F1-score of 99.98 percent validates the well-balanced and extremely successful performance and the model proves suitable in the
practical application of cloud security implementation in the real world.

Table 2: Performance Metrics of the Propose Model for Threat Detection.

Metrics Random Forest
Accuracy 99.97
Precision 99.97

Recall 99.97

Flscore 99.98
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Figure 4: Multi-Class ROC Curves for Random Forest Model

The ROC curve in Figure 4 shows the TPR vs the FPR, with each line denoting the ROC curve for a particular traffic class (e.g.,
Syn, UDP, Web DDoS, Benign). Because most curves quickly approach the top-left corner, showing a high TPR with a low FPR,
the plot shows the model's strong detection accuracy across numerous attack vectors. Moreover, the macro-average ROC curve
indicates strong overall performance.
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Figure 5: Multi-Class Confusion Matrix for Random Forest Model

Figure 5 shows the multi-class confusion matrix for the RF model, showcasing its strong classification performance across
various DDoS attack types and benign traffic. The diagonal dominance of high values indicates accurate predictions for most classes,
particularly for Syn, TFTP, DrDoS_LDAP, and DrDoS_SNMP, with minimal misclassifications. Notably, the BENIGN class also
shows high precision with 4200 correct classifications. The sparse distribution of off-diagonal components indicates that the model
is resilient in classifying multi-class network data and successfully differentiates between different types of attacks.
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Figure 6: Training and Validation Accuracy for Random Forest
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Figure 6 shows the relationship between the number of trees (n_estimators) and the RF model's training and validation accuracy
on the CIC-DD0S2019 dataset. As the number of trees grows, the graph reveals that both accuracies are getting close to being
perfect, reaching a level of about 10 trees. The model's ability to generalise to new data is enhanced when there is little variation
between the training and validation curves, which indicates that overfitting has not occurred. Using the dataset, the RF model
accurately and consistently identified the type of DDoS attack.

RF Model Loss - CIC-DDoS2019
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Figure 7: Training and Validation Loss Curve of Random Forest Model

Figure 7 illustrates that both loss curves have a sharp drop, and that as the tree count grows, the curves quickly level out.
Overfitting is not an issue and the model does a good job of generalizing from the training data since the validation and training loss
curves are so close to each other. This minimal loss means that the model is effective in learning and correctly detecting the security
risks associated with clouds through sophisticated ML.

4.1. Comparative Analysis

Cloud security system risk identification using machine learning models is compared in this section. The RF model was clearly
better than all other models, as shown by Table IlI, which shows that it had the maximum accuracy of 99.97%. This remarkable
result highlights the high capability of RF in detecting the threat to the cloud accurately making it the most credible model to protect
intelligent systems. GB, LR and SVM on the other hand achieved 96.7%, 95.0%, 94.32% accuracies respectively and could not
come close to the high accuracy exhibited by the RF model.

Table 3: Accuracy Comparison of Machine Learning Models for Threat Detection

Models Accuracy
Random Forest model 99.97
Gradient Boosting[24] 96.7
Logistic Regression[25] 95.0
Support Vector Machine[26] 94.32

Several distinct advantages pertain to the suggested RF-based model's ability to identify DDoS threats in cloud environments.
Effective analysis with high-dimensional nonlinear data is supported by its ensemble learning architecture, which also ensures
extremely accurate classification against different sorts of attacks. It is possible to employ the model to decrease FP replies and
successfully identify threats, as evidenced by the near-perfect outcomes shown by the performance measures accuracy, precision,
recall, and F1-score. The enhanced generalisation and multi-category differentiation skills, as seen in ROC curves and confusion
matrices, are proof of this. There is a small issue with overfitting, but the model is very adaptable to real-world situations, as seen by
the steady training and validation curves. With its constant performance outperforming other models including GB, LR, and SVM,
the proposed RF model appears to be a reliable solution for intelligent cloud security systems.

5. Conclusion and Future Scope

Smart and adaptive security applications are essential in the wake of increasing cyberattacks on cloud systems. With the strength
of ensemble learning, RF became one of the most effective models in Cloud environment to detect DDoS attacks. It showed
excellent results as the accuracy rate was 99.97 percent signifying high strength and low misclassification. Its absolute advantage
over the other options such as GB, LR and SVM, makes it a good choice to be considered in the actual use. This method provides
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both detectability and interpretability and resilience in addition to being effective in detection, thus the method is suitable in dynamic
and high-stakes cloud settings. In the future, work needs to be done to reduce computational overheads to implement edges in real
time, to build on the continuous learning processes to be flexible and to look at hybrid models, which merge the feature extraction
capabilities of deep learning with the decision clarity of RF. The further extension of the model in its ability to identify zero-day and
cross-platform threats, integrating explainable Al to be more transparent, and adapting it to multi-cloud environments will also make
it even more applicable. With cloud ecosystems becoming increasingly large and complex, the explainable of Al and cybersecurity is
becoming central to the capability to keep up with more complex attack vectors. The areas of future work should be associated with
the further development of the model's scalability, implementation of real-time adaptive feedback, validation using various datasets
in the cloud, and generalization against zero-day attacks on dynamic multi-tenant clouds.
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