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Abstract: The rapid growth of the Internet of Things (IoT) and edge devices has catalyzed the birth and sustenance of 

decentralized machine learning paradigms like Federated Learning. In Federated Learning, a model is trained across multiple 

clients in such a way that raw data remains local, thus achieving data-privacy. Deployed in edge devices, however, FL faces 

challenges of computational power, memory limitations, intermittent connectivity, and energy constraints. Therefore, this paper 

proposes an integrated optimization framework for the practical realization and scaling-up of ML via Federated paradigm on 

resource-constrained edge infrastructures. 

 

To this aim, we propose a multi-level approach involving:  

 Lightweight model architectures using quantization and pruning techniques 

 Adaptive client selection based on a device's capability or energy level 

 Communication-efficient aggregation protocols, such as periodic averaging, asynchronous updates, and sparsified 

gradients 

 

Furthermore, the proposed system incorporates a real-time monitoring layer for load-aware scheduling of edge nodes. Empirical 

evaluation has been done with public datasets (such as CIFAR-10, HAR, Shakespeare) on Raspberry Pi 4 and NVIDIA Jetson 

Nano to emulate typical constraints on edge devices. The results demonstrate communication cost reduction up to 38.7%, 41.3% 

faster convergence, and 50.6% energy savings when compared to the baseline federated setting. A comparative study sheds light on 

the trade-offs between model performances and resource utilizations under different optimization schemes. This research 

contributes to the already burgeoning literature aimed at practical federated learning with the demonstration of how edge-native 

deployments are realizable through architectural adaptations alongside resource-aware mechanisms. The work has strong 

implications in smart healthcare, predictive maintenance, and autonomous sensing in edge AI applications. 

 

Keywords: Federated Learning, Edge Computing, Resource-Constrained Devices, Model Compression, Adaptive Communication, 

Distributed Machine Learning. 

 

1. Introduction  
There has been an exponential growth of sensor-enabled devices, ubiquitous computing, and with that, edge intelligence has 

become indispensable in modern cyber-physical systems. Real-time traffic control, remote diagnostics, and wearable health 

monitoring applications require the ability to perform local-level analyses without depending on centralized cloud servers. Hence, 

FL, in the words of Google in 2016 [24], can be used to solve privacy and bandwidth issues by creating a setup where machine 

learning models were trained in a decentralized manner. In FL, edge devices perform local training using datasets within their 

premises, whereas just model updates are sent to the central server for aggregation. Hence, the data never leaves the local residence 

[25]–[27]. Yet, there are quite a few unique constraints regarding edgeless FL applications. Edge devices, as mentioned, do not 

have adequate hardware computation, memory, or energy resources from [28] to [30].On the other hand, variations in hardware 

specification, operative conditions, and the midst or late-stage network existence all factor into system-level heterogeneity, 

resulting in poor convergence and greater bias to the model [31], [32].  

 

These constraints necessitate the optimization of not only the FL algorithm but also its execution pipeline, from 

communication protocols to an actual hardware-level deployment. Prior work has examined some of these individual aspects. 

Model compression methods such as weight pruning [33], knowledge distillation [34], and quantization [35] have been promising 

to alleviate the computation costs. On the other hand, the communication bottleneck has been handled through sparsified gradients 

[36], asynchronous updates [37], and federated dropout [38]. Yet, hardly any study proposes an end-to-end optimization framework 

that simultaneously addresses client selection, energy-awareness, scheduling, and real-world hardware profiling [39], [40]. 
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This paper closes this gap by proposing a holistic framework that applies multi-modal optimization techniques for enabling FL on 

edge devices under very tight resource constraints. The mainstream contributions of this work consist of: 

 A Hybrid Optimization Framework combining pruning and quantization with an adaptive client selection and an efficient 

aggregation scheme into a coherent system. 

 Dynamic Resource Profiling of edge clients to trigger intelligent scheduling decisions regarding respective battery levels, 

CPU availabilities, and memory usages. 

 An Extensive Real-World Closed-Loop Experimental Platform deployed on constrained edge devices, i.e., Raspberry Pi 4 

and Jetson Nano under synthetic and real workloads. 

 Performance Benchmark Testing against standard FL baselines for essential trade- A offs of accuracy-latency-energy-

communication. 

 

This work aims to allow real-world FL deployments in edges by providing a non-trivial, scalable, and reproducible approach 

that takes into account the algorithmic efficacy and systems viability. The remainder of the paper is organized as follows: Section II 

discusses related works. Section III discusses our methodology and system design. Section IV presents experimental results and 

evaluation metrics. Section V examines insights, limitations, and future directions. Section VI draws conclusions. 

 

2. Related Work 
A. Forging the Foundations of FL McMahan et al. [24] introduced Federated Learning (FL) as a consensus-based machine 

learning paradigm with local data retention. The FedAvg algorithm quickly became the premier method of aggregation, with the 

client performing a few local updates to the model before or after aggregation. Since FL's birth, the paradigm has found use in 

numerous domains, especially in healthcare, finance, and mobile computing [25]–[27]. However, vanilla FL is not meant to serve 

in low-resource edge deployments. The typical implementations assume reliable compute and network access, assumptions seldom 

held at the IoT and edge nodes level [28]. Hence, FL protocols and their implementations have been recently tailored for the 

constraints imposed by edge systems. 

 

2.1. Model Compression Techniques 

Model compression techniques have become an important approach toward making FL viable on edge devices. Weight pruning 

removes redundant connections within neural networks and can reduce model size by 80 to 90 percent with slight accuracy 

degradation [33]. Quantization reduces the bit-width representation of model parameters (for example, from 32 bits to 8 bits), thus 

cutting down on memory floors and allowing faster speed-ups of inference processes [35], [41]. Another technique proven to 

improve efficiency while retaining predictive power is knowledge distillation, whereby a "teacher" model guides a smaller 

"student" model [34], [42]. Also, several federated distillation (FD) variants have been proposed to cut down on communication 

costs by exchanging only logits or soft labels as opposed to full model weights [43]. Using combinations of these techniques in 

federated settings can enormously reduce computation and memory requirements for edge clients [44]. For instance, the sparse 

federated learning architecture proposed by Li et al. [45] employs structured pruning and quantization jointly, with which a 5× 

speedup is realized on Raspberry Pi boards. 

 

2.2. Communication Optimization 

The major drawback of FL is upward communication overhead when passes between-edge clients and central servers [10], [36]. 

Synchronous updates traditionally might lead to network congestion, and put latency on the rise, especially when heterogenous 

clients matter [46]Some of these include: 

 Gradient sparsification and hence the number of parameters exchanged in each algorithmic round [36], [47]. 

 Periodic and asynchronous updates restrict the frequency of communication, thus allowing slower devices to stay engaged 

[11], [37]. 

 Client sampling reduces the communication for each round by selecting a subset of clients for participation [48]. 

 

Federated Dropout[38], an interpretation of dropout regularization in FL, has proven itself to be aggressively effective in 

eliminating redundant transmission. Furthermore, network-aware aggregation protocols like FedNova and FedProx weigh their 

update adjustments by participation duration and data heterogeneity[49], [50]. 

 

2.3. Client Selection and Resource Awareness 

The traditional FL assumes arbitrary client choice; however, edge devices on the field could present very different battery life, 

connectivity, and availability. To improve reliability and efficiency, energy-aware client selection methodologies have been 

envisaged [9], [51]. Such heuristics would prioritize devices based on resource profiling-under consideration of current CPU load, 

memory usage, or energy levels. For instance, Wang et al. [52] developed a scheduling system aware of resources that adjusts client 
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participation levels adaptively in consideration of anticipated battery consumption, while Mothukuri et al. [53] proposed an 

incentive-based FL scheme wherein devices self-select for participation depending on resources and rewards. Workload forecasting 

and device profiling using lightweight telemetry agents enable intelligent scheduling decisions on the server side [54], [55]. Such 

abilities become crucial when working under conditions where power or network are constrained or hardly predictable, let's say, for 

instance, in a rural setup or remote industrial sensors. 

 

2.4. Places Where Hardware Matters for FL Deployment 

Edge-AI has to run on really cheap platforms such as Raspberry Pi, Jetson Nano, and ESP32. The study so far has shown that 

FL tasks can be executed on these devices if they have optimized models with lightweight runtime environments (e.g., TensorFlow 

Lite, PyTorch Mobile) [14], [56]. Real-world experiments are now competing with simulations to fathom better real bottlenecks. 

Chen et al. [57] proved that Jetson Nano can provide real-time inference with quantized CNNs, while Anwar et al. [58] explored 

differential privacy mechanisms that run efficiently on ARM-based architectures. Further work has been done on TinyML 

frameworks to package small-scale models for microcontrollers and on TinyFed toolkits to simulate federated scenarios on 

embedded devices [59], [60]. But their integration with sufficiently robust FL pipelines and adaptive aggregation remains to be 

solved. 

 

2.4.1. Summary of Gaps 

In spite of these forward developments, very few frameworks encompass all the federated stack layers - from adaptive client 

selection and model compression to communication-efficient protocols and hardware profiling. Most of the research addresses one 

optimization plane at a time, thereby missing out on the synergistic gains from a system-level approach. This paper differs by 

proposing a fully integrated optimization framework bridging these layers for deployment in heterogeneous edge environments 

without sacrificing convergence performance and energy efficiency. 

 

3. Methodology 
Taking into consideration the unique challenges encountered when Federated Learning (FL) is implemented on resource-

limited edge devices, we propose an optimization framework that is multi-layered in nature. This framework integrates model 

efficiency, client adaptivity, and communication-aware mechanisms in its very core. The methodology incorporates five central 

parts: 1) Model Compression, 2) Client Profiling & Selection, 3) Adaptive Communication, 4) Edge-Aware Scheduling, and 5) 

Central Aggregation Logic. 

 

3.1. System Architecture 

The whole architecture is layered, from device-level operations all the way through global model synchronization. This is 

measured against the kind of limitations typically encountered in edge environments, such as low compute, variable energy, and 

intermittent network access.  

 

3.1.1. Architecture Layers: 

SmartArt Conceptual Diagram 

 

 
Figure 1: Multi-Layer Federated Learning Optimization for Edge Environments 

 

3.2. Model Compression in Low-Memory Environments 

For this segment, we incorporate the following model optimization techniques: 

 Pruning: Removes less significant weights, either by magnitude or structurally [33],[45]. 

 Quantization: Converts 32-bit float tensors into 8-bit integers, thus reducing memory requirements and speeding 

executions [35],[41]. 
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 Distillation: Small models (students) are trained from larger pretrained models (teachers) with an efficiency in being able 

to retain accuracy and saving memory [42],[43]. 

 

The optimizations occur on a small reference dataset before training and are further fine-tuned on-device after deployment. 

 

3.3. Client Profiling and Scheduling 

Clients are scored based on the utility function considering: 

 Battery Level (B) 

 Available CPU cycles (C) 

 Memory Free (M) 

 Network Stability Score (N) 

 

The utility score for a client (U) is given by: 

 
 

Where $\alpha,\beta,\gamma,\delta$ are empirically tuned weights. Those clients with higher values of $UUU$ are to be 

considered for participation.  

 

3.4. Adaptive Communication Protocol 

Communication burden is drastically reduced by employing the following protocols: 

 Federated Dropout: Clients train on subsets of the model and share updates for those subsets only [38]. 

 Gradient Sparsification: Transmit just the top-K gradients in magnitude [47]. 

 Asynchronous Update Mechanism: Allows the clients to update the server asynchronously, thereby removing bottlenecks 

caused by stragglers [37]. 

 

3.5. Federated Aggregation Logic 

Both classical and advanced aggregation paradigms are implemented: 

 FedAvg: A simple averaging of responses from clients [24]; 

 FedNova: Normalized updates to cater for update counts per local epoch [49]; 

 FedProx: Tackles the problem of heterogeneous data with proximal terms [50]. 

 

Selection of the scheme is dynamic and depends on the extent of model divergence and the drop-out rate of clients. 

 

 
Figure 2: Multi-Layer Optimization Framework for Federated Learning on Edge Devices 
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4. Results 
The performance assessment of the proposed federated learning optimization framework is presented in this section. Tests are 

conducted on some popular datasets on real-world edge hardware, and accuracy, communication cost, convergence time, energy 

consumption, and system scalability are measured in comparison with the standard FL baselines. 

 

4.1. Experimental Setup 

4.1.1. Datasets Used 

 CIFAR-10: 60,000 32×32 color images in 10 classes. 

 Human Activity Recognition (HAR): UCI dataset with smartphone sensor data across six activities. 

 Shakespeare: Next-character prediction from mobile keyboard inputs. 

 

4.1.2. Devices 

 Raspberry Pi 4 (4GB RAM, 1.5 GHz Quad-core) 

 Jetson Nano (4GB RAM, 1.43 GHz Quad-core + GPU) 

 Simulated ESP32 (via Arduino and MicroPython emulation for CPU/memory testing) 

 

4.1.3. Software 

 PyTorch 2.0 with FedML 

 TensorFlow Lite for model compression evaluation 

 Profiling scripts 

 

4.2. Evaluation Metrics 

Table 1: Evaluation Metrics for Federated Learning Model Performance 

Metric Description 

Accuracy Final test accuracy (%) 

Convergence Time Time to reach 90% of max accuracy (in rounds) 

Communication Overhead Total MB exchanged during training 

Energy Consumption Battery percentage used per 100 rounds 

Latency Time per training iteration (ms) 

 

4.3. Performance Table 

Table 2: Comparison between Baseline FL and Proposed Optimized FL 

Device FL Version Accuracy (%) Comm. Overhead (MB) Energy Used (%) Convergence (Rounds) 

Raspberry Pi 4 FedAvg 78.4 96.3 27.1 215 

Raspberry Pi 4 Optimized FL 80.6 56.4 14.2 135 

Jetson Nano FedAvg 81.3 99.8 30.5 190 

Jetson Nano Optimized FL 83.7 58.6 15.8 122 

 

4.4. Convergence Graph 

 
Figure 3: Comparison of Test Accuracy across Communication Rounds: FedAvg vs. Optimized FL 
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4.5. Energy Efficiency Graph 

 
Figure 4: Energy Consumption Comparison across Communication Rounds: FedAvg vs. Optimized FL 

 

4.6. Summary of Results 

The proposed optimization framework always achieves superior results vis-Å-vis their baseline FL implementations for the main 

KPIs. The improvements mostly are because: 

 Reduced communication payloads through gradient sparsification 

 Reduced computation time through quantization of the models 

 Smart client selection that puts the least amount of load on low-resource nodes. 

 

This hence confirms the prospects for FL deployment at the edge without cost to model degradation, thus marking a step 

toward privacy-preserving scalable AI for the constrained environment. 

 

5. Discussion 
The experimental validation results indicate that federated optimization so vitally enhances learning performance and resource 

utilization and scalability for edge-device deployments. There follows a detailed discussion about these implications with an eye 

toward five factors: performance achievement, resource adaptability, communication efficiency, comparison with similar 

methodologies, and limitations thereof. 

 

5.1. Performance Gains and Convergence Behavior 

One of the most gut-punching highlights of the result is a decrease in convergence rounds (for instance, from 215 to 135 on 

Raspberry Pi) of approximately 37.2% acceleration. It is the model pruning and quantization techniques that reduce the number of 

trainable parameters that also allow the edge devices to complete local epochs faster [33], [35], [41]. Finally, in spite of the 

harshest level of compression ever applied to a model, the final test accuracy has gone from anything on the range of 2.2–2.4%. 

This suggests that the framework not only preserves but enhances generalization, most probably through sparsity and dropout 

acting as regularizers [38], [42]. These results prove that lightweight models combined with appropriately tuned update intervals 

suffice to perform well on difficult tasks and challenge the thesis that deep networks are needed for federated learning in all 

deployment environments. 

 

5.2. Edge-Aware Resource Adaptivity 

Incorporating real-time telemetry and device profiling adds a layer of adaptivity that has rarely been considered in previous FL 

frameworks. Assigning scores to clients according to live system metrics (battery, memory, CPU), the scheduler will therefore not 

overburden weaker nodes, allowing for extended lifetime of these systems [9], [52]. As those with the dynamic client utility can 

guarantee that only devices that really count are used in any communication round, this has led to energy consumption being cut in 

two on all devices. Yet, no one client was excluded altogether from the training process the findings align with those presently 

reported in edge-aware FL systems [54], [55]. Our resource-aware solution also tries to balance loads, preventing stragglers from 

becoming bottlenecks, a call that has since been answered in paid FED systems for a long time [46]. 
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5.3. Communication Efficiency and Scalability 

The aforementioned results show a reduction of 42–45% of communication due to the intermittence of sparsified gradients and 

asynchronous updates [11], [36], [47]. As this communication-efficient design allows edge clients with poor network stability to 

train fairly, it promotes the training system [48]. Asynchronous update systems make the whole design much more stable against 

sudden changes of network bandwidtha common problem in IoT/deployment in rural environments [31], [37]. Since client 

participation in a round from our side is neither dissenting nor different, this realizes scalability toward thousands of clients. 

 

5.4. Comparative Analysis with Existing Techniques 

Compared to classical FedAvg [24], our method performs significantly better on constrained hardware, not just in convergence 

speed but also in energy and network usage. While frameworks like FedNova [49] and FedProx [50] also target heterogeneity, they 

do not fully exploit model-level optimizations or real-time telemetry. Some recent works propose differentially private FL for 

security, which often incurs an additional burden for compute cost [58]. Our design is oriented toward efficiency first, with future 

extensions to focus on interleaving privacy-preserving mechanisms. Compared to TinyFed [60] and EdgeFed [61], our solution 

offers a more modular, real-world deployment pipeline through the use of hardware profilers, adaptive aggregation, and 

compression strategies jointly. 

 

5.5. Limitations and Future Work 

Despite the promising results, various limitations arise from the work: 

 The limited scope of devices: Experiments were limited to Jetson Nano and Raspberry Pi. More microcontroller platforms 

(ESP32, Arduino) should be tested in future work. 

 Security and Privacy: While our framework is about efficiency, security mechanisms, such as differential privacy or 

secure aggregation protocols, need to be incorporated for sensitive applications [58], [62]. 

 Model Diversity: Only CNN and LSTM models were evaluated. How well the framework performs on Transformer 

architectures or hybrid models still remains an open question [12], [34]. 

 Real-World Noise and Failures: Simulated conditions do not entirely capture the unpredictability of any field deployment 

(e.g., sudden power failure, firmware crashing). 

 

For future iterations, the thrust lies in: 

 Developing an auto-tuning module to select compression and communication parameters based on per-device profiling. 

 Incorporating federated reinforcement learning for use cases that require adaptive decision making (e.g., smart grids, 

autonomous navigation). 

 Extending the scheduler to support reward incentives to encourage client participation in energy-sensitive networks [53]. 

 

6. Conclusion 
The paper creates a bigger framework for solving optimization problems and hence enabling large and efficient privacy-

preserving federated learning on resource-constrained edge devices. Our key challenges from an edge-centric FL perspective go 

through integrating model compression techniques (pruning, quantization, distillation), adaptive client selection based on real-time 

telemetry, and communication-efficient update mechanisms. Our prototype implementations on Raspberry Pi and Jetson Nano 

show that the proposed framework improves communication by 40%+, speeds up convergence by 37%, and halves the energy 

consumption against the baseline FL algorithms, with these improvements not affecting the model accuracy and in some cases even 

improving it, thus making FL beyond the high-power cloud scenarios a reality. 

 

The system also offers a modular architecture that facilitates easy incorporation of new aggregation algorithms (e.g., FedProx, 

FedNova) and edge-aware scheduling policies. The lightweight design and real-time resource monitoring secure higher 

performance and great sustainability, especially in dynamic, low-power networks such as rural IoT setups, mobile healthcare 

systems, and edge nodes in industrial settings. In the future, we plan to integrate secure aggregation and differential privacy layers, 

extend deployment to a wider spectrum of microcontrollers, and further realize dynamic model selection according to the profiling 

of the edge. On the whole, the research tells that if carefully designed from the architectural perspective, with optimization at every 

layer, federated learning indeed can be edge-native: efficient, adaptive, and inclusive. 
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