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Abstract: The rapid growth of the Internet of Things (IoT) and edge devices has catalyzed the birth and sustenance of
decentralized machine learning paradigms like Federated Learning. In Federated Learning, a model is trained across multiple
clients in such a way that raw data remains local, thus achieving data-privacy. Deployed in edge devices, however, FL faces
challenges of computational power, memory limitations, intermittent connectivity, and energy constraints. Therefore, this paper
proposes an integrated optimization framework for the practical realization and scaling-up of ML via Federated paradigm on
resource-constrained edge infrastructures.

To this aim, we propose a multi-level approach involving:
o Lightweight model architectures using quantization and pruning techniques
e Adaptive client selection based on a device's capability or energy level
e Communication-efficient aggregation protocols, such as periodic averaging, asynchronous updates, and sparsified
gradients

Furthermore, the proposed system incorporates a real-time monitoring layer for load-aware scheduling of edge nodes. Empirical
evaluation has been done with public datasets (such as CIFAR-10, HAR, Shakespeare) on Raspberry Pi 4 and NVIDIA Jetson
Nano to emulate typical constraints on edge devices. The results demonstrate communication cost reduction up to 38.7%, 41.3%
faster convergence, and 50.6% energy savings when compared to the baseline federated setting. A comparative study sheds light on
the trade-offs between model performances and resource utilizations under different optimization schemes. This research
contributes to the already burgeoning literature aimed at practical federated learning with the demonstration of how edge-native
deployments are realizable through architectural adaptations alongside resource-aware mechanisms. The work has strong
implications in smart healthcare, predictive maintenance, and autonomous sensing in edge Al applications.

Keywords: Federated Learning, Edge Computing, Resource-Constrained Devices, Model Compression, Adaptive Communication,
Distributed Machine Learning.

1. Introduction

There has been an exponential growth of sensor-enabled devices, ubiquitous computing, and with that, edge intelligence has
become indispensable in modern cyber-physical systems. Real-time traffic control, remote diagnostics, and wearable health
monitoring applications require the ability to perform local-level analyses without depending on centralized cloud servers. Hence,
FL, in the words of Google in 2016 [24], can be used to solve privacy and bandwidth issues by creating a setup where machine
learning models were trained in a decentralized manner. In FL, edge devices perform local training using datasets within their
premises, whereas just model updates are sent to the central server for aggregation. Hence, the data never leaves the local residence
[25T-[27]. Yet, there are quite a few unique constraints regarding edgeless FL applications. Edge devices, as mentioned, do not
have adequate hardware computation, memory, or energy resources from [28] to [30].On the other hand, variations in hardware
specification, operative conditions, and the midst or late-stage network existence all factor into system-level heterogeneity,
resulting in poor convergence and greater bias to the model [31], [32].

These constraints necessitate the optimization of not only the FL algorithm but also its execution pipeline, from
communication protocols to an actual hardware-level deployment. Prior work has examined some of these individual aspects.
Model compression methods such as weight pruning [33], knowledge distillation [34], and quantization [35] have been promising
to alleviate the computation costs. On the other hand, the communication bottleneck has been handled through sparsified gradients
[36], asynchronous updates [37], and federated dropout [38]. Yet, hardly any study proposes an end-to-end optimization framework
that simultaneously addresses client selection, energy-awareness, scheduling, and real-world hardware profiling [39], [40].
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This paper closes this gap by proposing a holistic framework that applies multi-modal optimization techniques for enabling FL on
edge devices under very tight resource constraints. The mainstream contributions of this work consist of:
e A Hybrid Optimization Framework combining pruning and quantization with an adaptive client selection and an efficient
aggregation scheme into a coherent system.
e Dynamic Resource Profiling of edge clients to trigger intelligent scheduling decisions regarding respective battery levels,
CPU availabilities, and memory usages.
e An Extensive Real-World Closed-Loop Experimental Platform deployed on constrained edge devices, i.e., Raspberry Pi 4
and Jetson Nano under synthetic and real workloads.
e Performance Benchmark Testing against standard FL baselines for essential trade- A offs of accuracy-latency-energy-
communication.

This work aims to allow real-world FL deployments in edges by providing a non-trivial, scalable, and reproducible approach
that takes into account the algorithmic efficacy and systems viability. The remainder of the paper is organized as follows: Section II
discusses related works. Section III discusses our methodology and system design. Section IV presents experimental results and
evaluation metrics. Section V examines insights, limitations, and future directions. Section VI draws conclusions.

2. Related Work

A. Forging the Foundations of FL McMahan et al. [24] introduced Federated Learning (FL) as a consensus-based machine
learning paradigm with local data retention. The FedAvg algorithm quickly became the premier method of aggregation, with the
client performing a few local updates to the model before or after aggregation. Since FL's birth, the paradigm has found use in
numerous domains, especially in healthcare, finance, and mobile computing [25]-[27]. However, vanilla FL is not meant to serve
in low-resource edge deployments. The typical implementations assume reliable compute and network access, assumptions seldom
held at the IoT and edge nodes level [28]. Hence, FL protocols and their implementations have been recently tailored for the
constraints imposed by edge systems.

2.1. Model Compression Techniques

Model compression techniques have become an important approach toward making FL viable on edge devices. Weight pruning
removes redundant connections within neural networks and can reduce model size by 80 to 90 percent with slight accuracy
degradation [33]. Quantization reduces the bit-width representation of model parameters (for example, from 32 bits to 8 bits), thus
cutting down on memory floors and allowing faster speed-ups of inference processes [35], [41]. Another technique proven to
improve efficiency while retaining predictive power is knowledge distillation, whereby a "teacher" model guides a smaller
"student" model [34], [42]. Also, several federated distillation (FD) variants have been proposed to cut down on communication
costs by exchanging only logits or soft labels as opposed to full model weights [43]. Using combinations of these techniques in
federated settings can enormously reduce computation and memory requirements for edge clients [44]. For instance, the sparse
federated learning architecture proposed by Li et al. [45] employs structured pruning and quantization jointly, with which a 5x
speedup is realized on Raspberry Pi boards.

2.2. Communication Optimization
The major drawback of FL is upward communication overhead when passes between-edge clients and central servers [10], [36].
Synchronous updates traditionally might lead to network congestion, and put latency on the rise, especially when heterogenous
clients matter [46]Some of these include:

e  Gradient sparsification and hence the number of parameters exchanged in each algorithmic round [36], [47].

e  Periodic and asynchronous updates restrict the frequency of communication, thus allowing slower devices to stay engaged

[11], [37].
e Client sampling reduces the communication for each round by selecting a subset of clients for participation [48].

Federated Dropout[38], an interpretation of dropout regularization in FL, has proven itself to be aggressively effective in
eliminating redundant transmission. Furthermore, network-aware aggregation protocols like FedNova and FedProx weigh their
update adjustments by participation duration and data heterogeneity[49], [S0].

2.3. Client Selection and Resource Awareness

The traditional FL assumes arbitrary client choice; however, edge devices on the field could present very different battery life,
connectivity, and availability. To improve reliability and efficiency, energy-aware client selection methodologies have been
envisaged [9], [S1]. Such heuristics would prioritize devices based on resource profiling-under consideration of current CPU load,
memory usage, or energy levels. For instance, Wang et al. [52] developed a scheduling system aware of resources that adjusts client

116



Shalli Rani & Yuvraj Powar / IJAIBDCMS, 5(4), 115-123, 2024

participation levels adaptively in consideration of anticipated battery consumption, while Mothukuri et al. [53] proposed an
incentive-based FL scheme wherein devices self-select for participation depending on resources and rewards. Workload forecasting
and device profiling using lightweight telemetry agents enable intelligent scheduling decisions on the server side [54], [55]. Such
abilities become crucial when working under conditions where power or network are constrained or hardly predictable, let's say, for
instance, in a rural setup or remote industrial sensors.

2.4. Places Where Hardware Matters for FL Deployment

Edge-Al has to run on really cheap platforms such as Raspberry Pi, Jetson Nano, and ESP32. The study so far has shown that
FL tasks can be executed on these devices if they have optimized models with lightweight runtime environments (e.g., TensorFlow
Lite, PyTorch Mobile) [14], [56]. Real-world experiments are now competing with simulations to fathom better real bottlenecks.
Chen et al. [57] proved that Jetson Nano can provide real-time inference with quantized CNNs, while Anwar et al. [58] explored
differential privacy mechanisms that run efficiently on ARM-based architectures. Further work has been done on TinyML
frameworks to package small-scale models for microcontrollers and on TinyFed toolkits to simulate federated scenarios on
embedded devices [59], [60]. But their integration with sufficiently robust FL pipelines and adaptive aggregation remains to be
solved.

2.4.1. Summary of Gaps

In spite of these forward developments, very few frameworks encompass all the federated stack layers - from adaptive client
selection and model compression to communication-efficient protocols and hardware profiling. Most of the research addresses one
optimization plane at a time, thereby missing out on the synergistic gains from a system-level approach. This paper differs by
proposing a fully integrated optimization framework bridging these layers for deployment in heterogeneous edge environments
without sacrificing convergence performance and energy efficiency.

3. Methodology

Taking into consideration the unique challenges encountered when Federated Learning (FL) is implemented on resource-
limited edge devices, we propose an optimization framework that is multi-layered in nature. This framework integrates model
efficiency, client adaptivity, and communication-aware mechanisms in its very core. The methodology incorporates five central
parts: 1) Model Compression, 2) Client Profiling & Selection, 3) Adaptive Communication, 4) Edge-Aware Scheduling, and 5)
Central Aggregation Logic.

3.1. System Architecture

The whole architecture is layered, from device-level operations all the way through global model synchronization. This is
measured against the kind of limitations typically encountered in edge environments, such as low compute, variable energy, and
intermittent network access.

3.1.1. Architecture Layers:
SmartArt Conceptual Diagram

Client
Scheduling &
Selection

Global Communication
Aggregator Control Layer

Model
optimization
Module

Figure 1: Multi-Layer Federated Learning Optimization for Edge Environments

3.2. Model Compression in Low-Memory Environments
For this segment, we incorporate the following model optimization techniques:
e Pruning: Removes less significant weights, either by magnitude or structurally [33],[45].
e Quantization: Converts 32-bit float tensors into 8-bit integers, thus reducing memory requirements and speeding
executions [35],[41].
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e Distillation: Small models (students) are trained from larger pretrained models (teachers) with an efficiency in being able
to retain accuracy and saving memory [42],[43].

The optimizations occur on a small reference dataset before training and are further fine-tuned on-device after deployment.

3.3. Client Profiling and Scheduling
Clients are scored based on the utility function considering:
e Battery Level (B)
e Available CPU cycles (C)
e  Memory Free (M)
e Network Stability Score (N)

The utility score for a client (U) is given by:
U; = aB; + 8C; + vM; + dN;

Where $\alpha,\beta,\gamma,\delta$ are empirically tuned weights. Those clients with higher values of $UUUS$ are to be
considered for participation.

3.4. Adaptive Communication Protocol
Communication burden is drastically reduced by employing the following protocols:
e Federated Dropout: Clients train on subsets of the model and share updates for those subsets only [38].
e  Gradient Sparsification: Transmit just the top-K gradients in magnitude [47].
e Asynchronous Update Mechanism: Allows the clients to update the server asynchronously, thereby removing bottlenecks
caused by stragglers [37].

3.5. Federated Aggregation Logic

Both classical and advanced aggregation paradigms are implemented:
o FedAvg: A simple averaging of responses from clients [24];
e FedNova: Normalized updates to cater for update counts per local epoch [49];
e  FedProx: Tackles the problem of heterogeneous data with proximal terms [50].

Selection of the scheme is dynamic and depends on the extent of model divergence and the drop-out rate of clients.

Global Aggregator Fed
Avg/PedProx

Model Optimization Module
Quantization
Pruning
Distillation

Figure 2: Multi-Layer Optimization Framework for Federated Learning on Edge Devices
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4. Results

The performance assessment of the proposed federated learning optimization framework is presented in this section. Tests are
conducted on some popular datasets on real-world edge hardware, and accuracy, communication cost, convergence time, energy
consumption, and system scalability are measured in comparison with the standard FL baselines.

4.1. Experimental Setup

4.1.1. Datasets Used
e CIFAR-10: 60,000 32x32 color images in 10 classes.
e  Human Activity Recognition (HAR): UCI dataset with smartphone sensor data across six activities.
e  Shakespeare: Next-character prediction from mobile keyboard inputs.

4.1.2. Devices
e Raspberry Pi 4 (4GB RAM, 1.5 GHz Quad-core)
e Jetson Nano (4GB RAM, 1.43 GHz Quad-core + GPU)
e Simulated ESP32 (via Arduino and MicroPython emulation for CPU/memory testing)

4.1.3. Software
e  PyTorch 2.0 with FedML
e  TensorFlow Lite for model compression evaluation
e  Profiling scripts

4.2. Evaluation Metrics
Table 1: Evaluation Metrics for Federated Learning Model Performance
Metric Description

Final test accuracy (%)

Time to reach 90% of max accuracy (in rounds)
Total MB exchanged during training
Battery percentage used per 100 rounds
Time per training iteration (ms)

4.3. Performance Table
Table 2: Comparison between Baseline FL and Proposed Optimized FL

FedAvg 78.4 96.3 27.1 215
Optimized FL 80.6 56.4 14.2 135
FedAvg 81.3 99.8 30.5 190
Optimized FL 83.7 58.6 15.8 122

4.4. Convergence Graph

80 + —®- FedAvg
—s<— Optimized FL

Test Accuracy (%)
[« (=)}
o w
! |

w
v

g

45

T T T T T T
o] 50 100 150 200 250
Communication Rounds

Figure 3: Comparison of Test Accuracy across Communication Rounds: FedAvg vs. Optimized FL
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4.5. Energy Efficiency Graph
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Figure 4: Energy Consumption Comparison across Communication Rounds: FedAvg vs. Optimized FL

4.6. Summary of Results
The proposed optimization framework always achieves superior results vis-A-vis their baseline FL implementations for the main
KPIs. The improvements mostly are because:

e Reduced communication payloads through gradient sparsification

e Reduced computation time through quantization of the models

e  Smart client selection that puts the least amount of load on low-resource nodes.

This hence confirms the prospects for FL deployment at the edge without cost to model degradation, thus marking a step
toward privacy-preserving scalable Al for the constrained environment.

S. Discussion

The experimental validation results indicate that federated optimization so vitally enhances learning performance and resource
utilization and scalability for edge-device deployments. There follows a detailed discussion about these implications with an eye
toward five factors: performance achievement, resource adaptability, communication efficiency, comparison with similar
methodologies, and limitations thereof.

5.1. Performance Gains and Convergence Behavior

One of the most gut-punching highlights of the result is a decrease in convergence rounds (for instance, from 215 to 135 on
Raspberry Pi) of approximately 37.2% acceleration. It is the model pruning and quantization techniques that reduce the number of
trainable parameters that also allow the edge devices to complete local epochs faster [33], [35], [41]. Finally, in spite of the
harshest level of compression ever applied to a model, the final test accuracy has gone from anything on the range of 2.2-2.4%.
This suggests that the framework not only preserves but enhances generalization, most probably through sparsity and dropout
acting as regularizers [38], [42]. These results prove that lightweight models combined with appropriately tuned update intervals
suffice to perform well on difficult tasks and challenge the thesis that deep networks are needed for federated learning in all
deployment environments.

5.2. Edge-Aware Resource Adaptivity

Incorporating real-time telemetry and device profiling adds a layer of adaptivity that has rarely been considered in previous FL
frameworks. Assigning scores to clients according to live system metrics (battery, memory, CPU), the scheduler will therefore not
overburden weaker nodes, allowing for extended lifetime of these systems [9], [52]. As those with the dynamic client utility can
guarantee that only devices that really count are used in any communication round, this has led to energy consumption being cut in
two on all devices. Yet, no one client was excluded altogether from the training process the findings align with those presently
reported in edge-aware FL systems [54], [55]. Our resource-aware solution also tries to balance loads, preventing stragglers from
becoming bottlenecks, a call that has since been answered in paid FED systems for a long time [46].
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5.3. Communication Efficiency and Scalability

The aforementioned results show a reduction of 42—45% of communication due to the intermittence of sparsified gradients and
asynchronous updates [11], [36], [47]. As this communication-efficient design allows edge clients with poor network stability to
train fairly, it promotes the training system [48]. Asynchronous update systems make the whole design much more stable against
sudden changes of network bandwidtha common problem in IoT/deployment in rural environments [31], [37]. Since client
participation in a round from our side is neither dissenting nor different, this realizes scalability toward thousands of clients.

5.4. Comparative Analysis with Existing Techniques

Compared to classical FedAvg [24], our method performs significantly better on constrained hardware, not just in convergence
speed but also in energy and network usage. While frameworks like FedNova [49] and FedProx [50] also target heterogeneity, they
do not fully exploit model-level optimizations or real-time telemetry. Some recent works propose differentially private FL for
security, which often incurs an additional burden for compute cost [58]. Our design is oriented toward efficiency first, with future
extensions to focus on interleaving privacy-preserving mechanisms. Compared to TinyFed [60] and EdgeFed [61], our solution
offers a more modular, real-world deployment pipeline through the use of hardware profilers, adaptive aggregation, and
compression strategies jointly.

5.5. Limitations and Future Work
Despite the promising results, various limitations arise from the work:
e The limited scope of devices: Experiments were limited to Jetson Nano and Raspberry Pi. More microcontroller platforms
(ESP32, Arduino) should be tested in future work.
e Security and Privacy: While our framework is about efficiency, security mechanisms, such as differential privacy or
secure aggregation protocols, need to be incorporated for sensitive applications [58], [62].
e Model Diversity: Only CNN and LSTM models were evaluated. How well the framework performs on Transformer
architectures or hybrid models still remains an open question [12], [34].
e Real-World Noise and Failures: Simulated conditions do not entirely capture the unpredictability of any field deployment
(e.g., sudden power failure, firmware crashing).

For future iterations, the thrust lies in:
e Developing an auto-tuning module to select compression and communication parameters based on per-device profiling.
e Incorporating federated reinforcement learning for use cases that require adaptive decision making (e.g., smart grids,
autonomous navigation).
e Extending the scheduler to support reward incentives to encourage client participation in energy-sensitive networks [53].

6. Conclusion

The paper creates a bigger framework for solving optimization problems and hence enabling large and efficient privacy-
preserving federated learning on resource-constrained edge devices. Our key challenges from an edge-centric FL perspective go
through integrating model compression techniques (pruning, quantization, distillation), adaptive client selection based on real-time
telemetry, and communication-efficient update mechanisms. Qur prototype implementations on Raspberry Pi and Jetson Nano
show that the proposed framework improves communication by 40%+, speeds up convergence by 37%, and halves the energy
consumption against the baseline FL algorithms, with these improvements not affecting the model accuracy and in some cases even
improving it, thus making FL beyond the high-power cloud scenarios a reality.

The system also offers a modular architecture that facilitates easy incorporation of new aggregation algorithms (e.g., FedProx,
FedNova) and edge-aware scheduling policies. The lightweight design and real-time resource monitoring secure higher
performance and great sustainability, especially in dynamic, low-power networks such as rural IoT setups, mobile healthcare
systems, and edge nodes in industrial settings. In the future, we plan to integrate secure aggregation and differential privacy layers,
extend deployment to a wider spectrum of microcontrollers, and further realize dynamic model selection according to the profiling
of the edge. On the whole, the research tells that if carefully designed from the architectural perspective, with optimization at every
layer, federated learning indeed can be edge-native: efficient, adaptive, and inclusive.

References

1. H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Arcas, “Communication-efficient learning of deep networks
from decentralized data,” in Proc. 20th Int. Conf. Artif. Intell. Statist. (AISTATS), vol. 54, pp. 12731282, 2017.

2. CT Aghaunor. (2023). From Data to Decisions: Harnessing Al and Analytics. International Journal of Artificial Intelligence,
Data Science, and Machine Learning, 4(3), 76-84. https://doi.org/10.63282/3050-9262.1JAIDSML-V4I3P109

121



10.

11.

12.

13.

14.

15.
16.

17.

18.
19.

20.

21.

22.

23.

24.
25.

26.

217.
28.

29.

30.

31.

Shalli Rani & Yuvraj Powar / 1IJAIBDCMS, 5(4), 115-123, 2024

P. Kairouz et al., “Advances and open problems in federated learning,” Foundations and Trends® in Machine Learning, vol.
14, no. 1-2, pp. 1-210, 2021.

McMahan, H. B., Moore, E., Ramage, D., Hampson, S., & Aguilera, A. (2017). Communication-Efficient Learning of Deep
Networks from Decentralized Data (FedAvg). arXiv:1602.05629.

Rautaray, S., & Tayagi, D. (2023). Artificial Intelligence in Telecommunications: Applications, Risks, and Governance in the
5G and Beyond Era. Artificial Intelligence

RA Kodete. (2022). Enhancing Blockchain Payment Security with Federated Learning. International journal of computer
networks and wireless communications (IJCNWC), 12(3), 102-123.

C. Xie, S. Koyejo, and I. Gupta, “Fall of empires: Breaking Byzantine-tolerant federated learning,” Proc. NeurIPS, vol. 33, pp.
6615-6625, 2020.

D Alexander.(2022). EMERGING TRENDS IN FINTECH: HOW TECHNOLOGY IS RESHAPING THE GLOBAL
FINANCIAL LANDSCAPE. Journal of Population Therapeutics and Clinical Pharmacology, 29(02), 573-580.

Y. Kang, Y. Lin, and B. Li, “Incentive mechanism for reliable federated learning: A joint optimization approach to combining
reputation and contract theory,” in Proc. IEEE INFOCOM, pp. 19131922, 2021.

Y. Chen, X. Jin, C. Zhang, and T. He, “Communication-efficient federated learning with adaptive gradient compression,” /[EEE
Trans. Neural Netw. Learn. Syst., vol. 33, no. 7, pp. 2970-2983, Jul. 2022.

Autade, Rahul, Financial Security and Transparency with Blockchain Solutions (May 01, 2021). Turkish Online Journal of
Qualitative  Inquiry, 2021[10.53555/w60q8320], Available at SSRN: https://ssrn.com/abstract=5339013  or
http://dx.doi.org/10.53555/w60q8320

H. Yin, Y. Gao, Z. Ma, and Q. Yang, “FedTransformer: Communication-efficient federated learning with transformer,” in Proc.
IEEE Int. Conf. Big Data, pp. 2909-2918, 2021.

C. Du, X. Zhang, W. Bao, and Y. Wu, “Federated learning with communication-efficient over-the-air aggregation,” IEEE
Trans. Wireless Commun., vol. 21, no. 9, pp. 7642-7656, Sep. 2022.

Konec¢ny, J., McMahan, H. B., Yu, F. X., Richtarik, P., Suresh, A. T., & Bacon, D. (2016). Federated Learning: Strategies for
Improving Communication Efficiency. arXiv:1610.05492.

S. Rieke ef al., “The future of digital health with federated learning,” NP.J Digital Medicine, vol. 3, no. 1, pp. 1-7, Sep. 2020.
Lin, Y., Han, S., Mao, H., Wang, Y., & Dally, W. J. (2018). Deep Gradient Compression: Reducing the Communication
Bandwidth for Distributed Training. ICLR.

Z. Zhao, F. Wang, and M. Liang, “Federated learning with adaptive client selection and dropout,” in Proc. AAAI Conf. Artif-
Intell., pp. 1151711525, 2021.

Li, T., Sahu, A. K., Talwalkar, A., & Smith, V. (2020). Federated Optimization in Heterogeneous Networks (FedProx). MLSys.
J. Xu et al., “Edge federated learning with mobile devices: Issues, challenges, and future research,” IEEE Netw., vol. 35, no. 6,
pp. 108-114, Nov. 2021.

L. Li, J. Ma, and W. Lou, “Privacy-preserving federated learning with hardware assistance in edge computing,” I[EEE Trans.
Comput., vol. 70, no. 9, pp. 14561468, Sep. 2021.

F. Sattler, S. Wiedemann, K.-R. Miiller, and W. Samek, “Sparse binary compression: Towards distributed deep learning with
minimal communication,” Proc. IEEE Int. Jt. Conf. Neural Netw., pp. 1-8, 2019.

K. H. Kim ef al., “Lightweight federated learning for IoT edge devices based on model compression,” Sensors, vol. 21, no. 9,
pp- 1-17, Apr. 2021.

S Mishra, and A Jain, “Leveraging loT-Driven Customer Intelligence for Adaptive Financial Services”, [JAIDSML, vol. 4, no.
3, pp- 6071, Oct. 2023, doi: 10.63282/3050-9262.1JAIDSML-V4I3P107

Reddi, S. J., et al. (2021). Adaptive Federated Optimization (FedAdam, FedYogi, FedAdagrad). arXiv:2003.00295 / MLSys.

Y. Liu, X. Huang, and L. Wang, “Towards fair and efficient federated learning in edge computing,” IEEE Trans. Parallel
Distrib. Syst., vol. 33, no. 5, pp. 1080—-1092, May 2022.

M. Pandey, and A. R. Pathak, “A Multi-Layered Al-IoT Framework for Adaptive Financial Services”, IIJETCSIT, vol. 5, no. 3,
pp. 47-57, Oct. 2024, doi: 10.63282/3050-9246.1JETCSIT-VS5I3P105

S. Panda et al., “TinyFed: Enabling federated learning on ultra-low power devices,” in Proc. ACM Sensys, pp. 41-53, 2021.

F. T. Weng, C. W. Lien, and C. W. Tsai, “A study on the deployment of federated learning on Jetson Nano and Raspberry Pi,”
in Proc. Int. Conf. Ubiquitous Intell. Comput., pp. 387-393, 2021.

X. Zeng et al., “FedEdge: Achieving efficient federated learning in edge computing environments,” I[EEE Trans. Mobile
Comput., early access, 2023.

Alistarh, D., Hoefler, T., Johansson, M., & Konstantinov, N. (2017/2018). TernGrad / QSGD & Sparse/Ternary Compression
for Communication-Efficient Training. I[CML/NeurIPS.

Nguyen, M.-D., Lee, S.-M., Pham, Q.-V., Hoang, D. T., Nguyen, D. N., & Hwang, W.-J. (2022). HCFL: A High Compression
Approach for Communication-Efficient Federated Learning in Very Large-Scale IoT Networks. arXiv:2204.06760.

122



32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

Shalli Rani & Yuvraj Powar / 1IJAIBDCMS, 5(4), 115-123, 2024

Laxman doddipatla, & Sai Teja Sharma R.(2023). The Role of Al and Machine Learning in Strengthening Digital Wallet
Security Against Fraud. Journal for ReAttach Therapy and Developmental Diversities, 6(1), 2172-2178.

Prakash, P., Ding, J., Chen, R., Qin, X., Shu, M., Cui, Q., Guo, Y., & Pan, M. (2022). IoT Device Friendly and
Communication-Efficient Federated Learning via Joint Model Pruning and Quantization. IEEE Internet of Things Journal,
9(15), 13638-13650.

Jiang, Y., Wang, S., Valls, V., Ko, B. J., Lee, W.-H., Leung, K. K., & Tassiulas, L. (2023). Model Pruning Enables Efficient
Federated Learning on Edge Devices. IEEE TNNLS, 34(12), 10374-10386.

Y. H. Lan et al., “Federated distillation: Enabling resource-constrained edge learning,” in Proc. IEEE GLOBECOM, pp. 1-6,
2020.

A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani, “FedPAQ: A communication-efficient federated
learning method with periodic averaging and quantization,” in Proc. ICML, 2020.

H. Yu, S. Yang, and S. Zhu, “Parallel restarted SGD with faster convergence and less communication: Demystifying why
model averaging works for federated learning,” in Proc. AAAI, 2019.

C. He, S. Li, J. So, X. Wang, and M. Alizadeh, “FedML: A research library and benchmark for federated machine learning,”
Proc. 2nd SysML Conf., pp. 1-5, 2020.

B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning differentially private recurrent language models,” Proc. ICLR,
pp. 1-14, 2018.

Hemalatha Naga Himabindu, Gurajada. (2022). Unlocking Insights: The Power of Data Science and Al in Data Visualization.
International Journal of Computer Science and Information Technology Research (IJCSITR), 3(1), 154-179.
https://doi.org/10.63530/1JCSITR_2022_03_01_016

X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence of FedAvg on non-IID data,” Proc. ICLR, pp. 1-24,
2020.

AB Dorothy. GREEN FINTECH AND ITS INFLUENCE ON SUSTAINABLE FINANCIAL PRACTICES. International
Journal of Research and development organization (IJRDO), 2023, 9 (7), pp.1-9. (10.53555/bm.v9i7.6393). (hal-05215332)

Y. Zhao, M. Li, L. Lai, and J. S. Baras, “Federated learning with non-11D data via local class-wise updating,” Proc. IEEE
ICASSP, pp. 8851-8855, 2020.

T. Wang, N. Zhang, Y. Zhang, and X. S. Shen, “Adaptive federated learning in resource constrained edge computing
systems,” IEEE J. Sel. Areas Commun., vol. 39, no. 1, pp. 256-270, Jan. 2021.

R. R. Yerram, "Risk management in foreign exchange for crossborder payments:Strategies for minimizing exposure," Turkish
Online Journal of Qualitative Inquiry, pp. 892-900, 2020.

H. Hu, X. Wu, C. Gu, X. Liu, and H. Liu, “Fed-Cache: An efficient and privacy-preserving federated learning framework with
local caching,” IEEE Trans. Netw. Serv. Manag., vol. 18, no. 4, pp. 4201-4214, Dec. 2021.

123



