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Abstract: The reliability and availability of cloud services are thus critical issues as the usage of cloud computing as a 

fundamental aspect of present-day digital infrastructure continues to grow. As cloud environments become more complex and 

larger, the utility of the traditional fault detection schemes and approaches is inadequate, thus providing possibilities of system 

crashes, poor performance, and interruption of services. In this paper, researching the use of Artificial Intelligence (AI) and 
Machine Learning (ML) in detecting faults and self-healing in cloud services is performed. It highlights how the traditional 

rule-based monitoring is moving towards AI-based solutions that utilize large operational datasets in order to find anomalies 

and perform predictive maintenance. It classifies many types of AI / ML models, such as supervised models, unsupervised 

models and deep learning models, and explains their success or effectiveness in detecting faults and automating recovery 

operations. Moreover, it also considers the issues and prospects of including AI/ML in fault management of the cloud 

environment with the final goal of achieving system resilience and operational effectiveness. 
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1. Introduction 
The concept of cloud computing has also emerged as the foundation of the current digital infrastructure where computing 

resources can be accessed on demand and provide scalability to both business enterprises and individuals alike [1]. With the 

increased use of cloud services by organizations as a way of running mission-critical applications, ensuring the availability of 

data and supporting remote operations, availability and reliability of services have remained crucial [2]. Nonetheless, the 

increasing size and complexity of cloud systems also increase their vulnerability to different kinds of faults such as faults on 

hardware, software bugs, and network disturbances. Fault detection in the cloud deals with detecting non-normal or abnormal 

behaviour that could result to service degradation or system failure in the cloud. The most common problems are crashing 

servers, memory leaks, network latency and software failures [3][4]. The typical rule-based monitoring systems tend to be 
unsuitable in such dynamic and heterogeneous environments because they are based on static thresholds and predetermined rules 

which are unable to predict novel or previously unknown failure patterns. Such shortcomings have led to the adoption of a 

paradigm shift in the adoption of Artificial Intelligence (AI) and Machine Learning (ML) techniques, capable of undertaking 

analysis on large volumes of log files, system events, and performance measurements independently and in real-time to identify 

anomalies in the system. 

 

The techniques used in AI and ML have been shown to provide revolutionary methodologies to deal with the shortcomings 

of the traditional fault detection and recovery methods [5]. Supervised, unsupervised, and reinforcement learning algorithms 

form the learning background of these models to analyse operational data, reveal latent failure patterns, and use predictive 

diagnostics [6]. Consequently, they increase the relevance, rate and flexibility of fault detection and allow proactive and 

automated healing. In addition to fault identification, inclusion of AI/ML in self-healing processes empowers cloud systems to 
self-manage faults and their recovery with minimal input of human intervention [7]. These are smart orchestration systems, 

automatic resource provisioning and autonomic service reconfiguration [8]. Specifically, methods like reinforcement learning 

and knowledge-based systems are especially interesting because they can continually optimize policies of recovery on a broad 

variety of fault scenarios and learn through time. The use of AI and ML allows creating intelligent, resilient and autonomous 

cloud-based infrastructures. The purpose of this review is to bring out the state-of-the-art methods, categorize these methods 

according to their methodology and area of application as well as comment on how AI/ML has an opportunity to be used in the 

future regarding fault management and self-healing of cloud services. 

 

1.1. Structure of the Paper 

The structure of this paper is as follows: Section II discusses the fundamentals of fault detection and self-healing in cloud 

environments. Section III reviews AI-based fault detection techniques. Section IV examines the role of AI and Machine 

Learning in cloud-based fault management. Section V presents self-healing architectures and mechanisms. Section VI reviews 
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relevant literature and case studies and finally, Section VII concludes with a discussion of challenges and future research 

directions. 

 

2. Fundamentals of Fault Detection and Self-Healing In Cloud Environments 
Fault Detection and Self-Healing in Cloud Environments refer to the automated processes of identifying, diagnosing, and 

resolving system failures with minimal human intervention. Fault detection continuously monitors system metrics, logs, and 

behaviours to detect anomalies or service disruptions. Once a fault is detected, self-healing mechanisms are triggered to restore 

normal operations through automated actions, such as restarting services, reallocating resources, or initiating backups [9]. These 

smart, adaptable methods greatly decrease downtime and increase operational efficiency in ever-changing cloud settings by 

ensuring high availability, reliability, and resilience. 

 

2.1. Fault Detection in Cloud Environment 
One definition of fault tolerance is a system's ability to respond quickly and effectively to unforeseen problems with 

hardware or software, while another is an approach to system design that allows a system to continue functioning even when a 

component fails [10]. A system may be able to keep running, although at a reduced capacity, after a breakdown thanks to fault 

tolerance technologies. Crash faults and Byzantine/Arbitrary faults are the two most common types of cloud-related errors.  In 

the event of a crash, the system might crash completely; in the case of a Byzantine or arbitrary malfunction, it could divert from 

its usual functionality. When resources like storage, software, and hardware fail in a cloud environment, it impacts end users. 

There are three types of hardware faults: temporary, intermittent, and permanent. 

 

2.2. Types of Faults  

The monitored system's fault occurrence can be ascertained by fault detection. This method relies on the interdependencies 

between several observable signals to identify process, actuator, and sensor failures [11]. Fault isolation and fault identification 
are closely related activities as well. Fault identification finds the size of a fault, while fault isolation finds its location and kind. 

One step in making a diagnosis is tracking down and removing the element that is causing the issue. During fault diagnosis, it is 

important to gather as much pertinent information as possible, such as the size, position, and time of identification of the defect, 

in order to determine the type of fault. 

 Physical Faults (hardware faults): System errors that primarily affect hardware components, including the CPU, 

RAM, storage, and power outages. 

 Software Faults: arise from bugs, incorrect configurations, or compatibility issues within operating systems, 

hypervisors, or cloud management software. Such faults may cause unexpected behaviour or service interruptions. 

 Network Faults (link faults): The resources the user might have access to due to cloud computing being of the 

network nature are prone to errors such as packet loss, failure of the link among others. 

 Processor Faults (node faults): These faults are due to software bugs, lack of resources and inappropriate 
consumption of the computational resources. 

 Service Expiry Faults: Inconveniences caused by expiration of the service period of an application being used when it 

runs out of the service period. 

 Timing Faults: Issues that will not allow an application to complete within the designated time frame. 

 Application Faults: be caused by necessary runtime errors, memory leakage or management of microservices with 

cloud-native characteristics. This can deny the user experience or lead to partial failures of services. 

 

2.3. Concepts of Self-Healing Systems in Distributed Architecture 

Cloud computing's self-healing systems are designed to find, fix, and recover from problems on their own, guaranteeing that 

services will be available and reliable at all times. These systems are defined by their autonomy, adaptability, resilience, and 

capacity to learn from past failures. The architecture typically comprises monitoring agents, anomaly detection modules, 
decision-making engines, and automated recovery mechanisms that collaboratively sustain system health. While traditional self-

healing methods rely on rule-based scripts and predefined workflows, they often struggle with unforeseen or complex scenarios. 

Smart problem identification, root cause analysis, and proactive recovery are made possible by AI-based self-healing systems 

that use pattern recognition, ML, and predictive analytics. These systems work exceptionally well in large-scale and dynamic 

cloud environments. The healing agent in such systems can be an integrated component or an independent module, and the 

design often aligns with software agent architectures autonomous, interactive, and environment-aware particularly in multi-agent 

configurations [12]. Systems operate based on these strategies and policies as tools for observing and evaluating the state of the 

system where the system collects information, which consists of the type and quality of information which has a critical role in 

the decisions of adaptation. A closer breakdown of these self-healing methods together with a literature review is described 

below. 

 

2.4. Traditional Methods vs. AI-Powered Approaches 
Progressive fault detection in cloud computing is simpler because it uses manual intervention and static rules, which are not 

effective in highly dynamic situations [13]. Conversely, AI-informed techniques employ ML to identify the complex patterns, 

adjust to varying circumstances and automate answers. It is more precise, scalable and has lower downtimes than the other 
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approaches, Studies comment DL models perform better than traditional methods that are used in cloud systems that have 

dynamic workloads [14]. Comparison of AI-based vs traditional fault detection is given below (Table I):  

 

Table 1: Traditional Fault vs. AI-Based Fault Detection with Aspects 

Aspect Traditional Fault Detection AI-Based Fault Detection 

Technique Used Static thresholds, rule-based tracking, and 

human intervention 

ML, data-driven anomaly detection, automated 

responses 

Adaptability Low adaptability to dynamic workloads and 
heterogeneous environments 

High adaptability to dynamic workloads and changing 
operational contexts 

Failure Pattern 

Recognition 

Limited to known issues and explicit 

patterns 

Can detect implicit, complex, and temporal failure 

patterns 

Automation Level Manual or semi-automated fault recovery Fully automated fault detection and self-healing 

actions 

Scalability in Large 

Ecosystems 

Performing poorly in intricate, large-scale 

cloud infrastructures 

Effective and scalable in massive, ever-changing 

cloud environments 

Learning Capability No learning from past incidents Learns from historical data and adapts over time 

Human Involvement Required for monitoring, diagnosis, and 

response 

Minimal to no human intervention required 

Performance (from 

case studies) 

Underperforms in environments with 

fluctuating workloads 

Demonstrated higher accuracy and adaptability using 

DL models in dynamic scenarios 

Resilience and 

Downtime 

Lower resilience, higher downtime due to 

delayed or missed detection 

Increased resilience, reduced downtime through 

proactive and predictive maintenance 

Example Case Study 

Finding 

Static thresholding underperformed DL models outperformed static methods in cloud-

hosted applications with dynamic workloads 

 

3. AI-Based Fault Detection Techniques For Fault Detection 
Cloud systems that can repair themselves rely heavily on AI for tasks like issue detection and diagnostics.  For the purpose 

of identifying and analysing network problems, they employ a wide range of supervised and unsupervised learning methods 

[15]. The kinds and characteristics that need to be detected, as well as the algorithms that can handle them, dictate the choice of 

algorithm. By training on labelled datasets that contain past fault data, supervised learning algorithms may accurately classify 

known faults. On the other hand, anomalies in unlabelled data can be more easily discovered using unsupervised learning 

models.  In order to find the best method for fault detection, these models are usually tested using cross-validation.  A basic 

framework for fault detection using ML is shown in Figure 1. 

 

 
Figure 1: AI-based Methods for Fault Detection for Self-Healing 

 

Here are the fault detection techniques based-AI are given below. 

 

3.1. Supervised Learning 

One typical use case for supervised learning algorithms in self-healing networks is defect detection. These algorithms 

undergo training on labelled datasets that comprise instances of both typical and unusual network behaviour. Supervised 

learning models can use observable features to learn from past data and indicate if a network state is normal or abnormal.  

Common supervised learning algorithms employed by self-healing networks for fault detection include SVMs, DT, and RF. 

Example: SVMs divide typical from unusual network data points according to their distance from a hyperplane. 

 

3.2. Unsupervised Learning 

The unsupervised learning methods are suitable for detecting the anomaly in the self-healing network since labelled data is 

not required. These methods process the fundamental structure of network telemetry data, to extract patterns that are suggestive 
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of a fault. Such technique can be helpful in case of identifying new errors or abnormalities in the behaviour of the system in 

complex cloud-based systems. Clustering algorithms, including K-means and DBSCAN, merge similar data points which form 

the data, and any outliers are potential abnormal data. Anomaly detection algorithms such as Isolation Forest and One-Class 

SVM allow finding data points that deviate greatly compared to the norm.  Self-healing networks do not need any prior labels to 

find new or lurking issues due to the unsupervised learning strategies. 
 

3.3. Deep Learning 

The capacity of DL methods, especially neural networks, to detect intricate patterns in data with many dimensions has 

brought them widespread attention.  For self-healing network defect detection, CNNs and RNNs are often utilised.  Problems 

like image-based fault identification in network topologies are well-suited to CNNs because of their superiority in analysing 

spatial correlations in network data. In contrast, RNNs excel at processing sequential data, which makes them great at spotting 

temporal outliers in network traffic patterns. By leveraging DL models, self-healing networks can detect subtle and complex 

faults that may evade traditional techniques. 

 

3.4. Ensemble Methods 

To enhance the effectiveness of self-healing networks in fault detection, ensemble learning approaches include numerous 

base learners. Common ensemble strategies for combining model predictions include bagging, boosting, and stacking. The 
accuracy and resilience of fault detection in self-healing networks can be improved by the use of ensemble approaches, which 

combine the benefits of multiple algorithms. These techniques mitigate the risk of overfitting and improve generalization 

performance, enabling self-healing networks to adapt to diverse and dynamic network environments. 

 

4. Role of AI and Machine Learning For Fault Management In Cloud  
Cloud fault management relies heavily on AI and ML for automated, real-time failure identification and prediction.  To 

detect outliers and prevent breakdowns before they happen, AI/ML models sift through mountains of data, in contrast to more 

conventional approaches [16]. This preventative method boosts operating efficiency, decreases downtime, and increases system 

reliability. AI and ML aid in the upkeep of stable cloud environments by continuously learning from both historical and real-

time data, guaranteeing peak performance and an effortless user experience. 

 

4.1. Artificial Intelligence and Machine Learning in Cloud Services  

The capacity of AI and ML to transform how the cloud is managed and exploited using smart automation, resource 

adaptation, and foresightful fault control is exciting and altering. Scalable and heterogeneous environments in cloud computing 

carry dynamic workloads which are not effectively monitored using conventional rule-based tools due to the possibility of 

missing more multifaceted types of failure [17]. AI and ML address this with the help of learning from the past logs, 

performance results, and machine behaviour. They then monitor anomalies, classify failures, and initiate self-healing actions 

based on the situation. Supervised learning models can predict hardware failure based on sensor data, while unsupervised 
models, such as clustering and autoencoders, can identify previously unseen anomalies in system logging [18]. Reinforcement 

learning can further enhance resilience in cloud services by optimizing recovery through feedback loops that modify approaches 

based on mitigation. These advantages put cloud providers in a position to improve service level agreements (SLAs) and 

incidents of downtime, and either stabilize operations of better respond to incidents of incident management., By having and 

AI/ML at different levels of the cloud computing stack from Virtual machine orchestration to application monitoring cloud 

service providers can maximize autonomy while operating efficiently, reliably, and ultimately having a cost-effective business 

model. 

 

4.2. Challenges of AI and ML in Cloud Security 

Incorporating AI and ML into cloud security has the potential to greatly improve capabilities, but businesses must overcome 

certain obstacles:  

 Data Privacy and Security: A lot of data is needed to train and run ML and AI systems, which makes people worried 

about the security and privacy of their data [19]. The International Association for Protection Professionals (IAPP) 

found that when it comes to AI solutions, 67% of organisations have trouble guaranteeing data protection. 

 Model Accuracy and Bias: The quality of the training data determines how effective AI and ML models are. Using 

biased or inadequate training data causes 70% of AI models to exhibit biases, according to a study from the MIT Media 

Lab. Improper data quality can cause security judgments to be biased or threat detection to be erroneous. 

 Resource and Cost Constraints: Large amounts of computing power and expert knowledge are needed to implement 

ML and AI systems. The expenses of creating and maintaining AI systems can be as much as 30% more than those of 

more conventional security solutions, according to research from McKinsey and Company. 

 Evolving Threat Landscape: Cyber threats are ever-changing, which is a constant struggle for AI and ML systems. 

To keep up with emerging threats, AI models need regular updates. According to IBM research, 65 per cent of 
organisations need help updating their AI models to account for new threats. 
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5. AI and ML Approaches for Self-Healing In Cloud Services 
The concepts of AI and ML in self-healing cloud services are complex algorithms that monitor and correct malfunctions in 

a system without human input. By means of the supervised, unsupervised, and DL techniques, the strategies comprise the use of 

operational data analysis to identify anomalies and manage corrective measures. Self-healing technologies may help cloud 

systems provide higher resilience, shorter downtime, and more balanced resource distribution, resulting in an overall increase in 

service availability and the formation of more efficient operational routines. 

 

5.1. Self-Healing Architecture and Mechanisms 

A material is considered self-healing if it can fix its own defects and regain its original properties with the help of its own 

internal or external resources.  Unlike regular polymers, those with self-healing capabilities can fix damage by transforming 

mechanical stress into chemical or physical processes [20]. These materials can greatly increase the durability of synthetics and 

have unique properties for each of their uses.  The term "self-healing material" refers to man-made substances that can mend 
themselves, either once or repeatedly, protecting against material degradation while simultaneously increasing efficiency, 

strength, and dependability [21]. Inspired by the biological ability of living organisms to recover from injuries, such as skin 

regeneration or bone repair, these materials aim to mimic nature’s resilience. While the concept of incorporating biological 

healing mechanisms into engineering has existed for nearly a century, research in this domain remains in its early stages. 

 

5.2. Reinforcement Learning for Autonomous Recovery 

A two-stage system that can achieve self-adaptation by learning rules based on objectives offline and changing rules based 

on real-time environmental data and user goals online. A combination of reinforcement learning and using Rules has been 

developed and assessed using reasoning.  The quantity of CPU allocation and the number of requests per unit are two dynamic 

features that fluctuate during runtime and are taken into account. Configuration properties, in accordance with dynamic 

properties, can take on varying values and transition between states.  In this test, the RUBiS simulator is used. [22]. Applied 
reinforcement learning based on response time to an online bookstore. A new method for hybrid decision-making is introduced 

by integrating deep reinforcement learning into the ROS Hybrid Behaviour Planner (RHBP), which employs policy-based 

reinforcement learning. Using an artificial neural network to store the acquired knowledge, this method employs a specific kind 

of reinforcement learning. Previous papers used value functions in reinforcement learning, but this paper uses a neural network. 

It has been checked for workload evaluation in the RUBiS simulator. 

 

5.3. Cloud Computing and Infrastructure 

Access to a shared pool of elastic computing resources, such as servers, storage, and networking, can be quickly and 

efficiently offered and released with no administrative effort when customers use cloud computing. New cloud infrastructures 

are substantially complex, usually stacks of virtualized and containerized environments, distributed microservices and scaling 

aspects that could produce unforeseen reliability and performance issues, particularly in the event of failure or resource 

bottlenecks [23]. AI and ML were introduced to support these challenges with intelligent monitoring and action suggestions 
from a top-down perspective, or autonomous fault detection at the infrastructure level and remediation at the systems level or 

application level. For instance, ML models could analyze telemetry logs from virtual machines and containers to identify 

evidence of resource exhaustion or failure in real-time, enabling corrective scaling or healing actions or through a subordinate 

level of the remediation process. Cloud infrastructures can achieve self-healing operational efficiencies and service resilience 

through the use of virtualization and abstraction components, (As shown in Figure 2). Cloud Computing Model, the cloud 

architecture spans three major layers: Application, Platform, and Infrastructure, each of which presents distinct opportunities for 

embedding AI-based self-healing modules. 

 

 
Figure 2: Cloud Computing Architecture 
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Modern data centres utilized for cloud computing are in fact intricate complexes, comprising tens of thousands of storage 

and memory devices. Many things can affect how stable cloud environments are.  System reboots or failures are among these, 

and they can affect the memory or power provisioning infrastructure (such overhead power boards) that services rely on. People 

should still take precautions to make sure cloud systems can handle any future mistakes, even when fault detectors and service 

recovery mechanisms can be applied to each of the following probable failure sources. 
 

6. Literature Review 
The given section is a literature review of cloud computing defects and self-healing systems with a specific focus on the 

topic of utilizing ML and AI algorithms. The brief description of reviews of the studies has been presented in Table II. Porch et 

al. (2020) focus their efforts on utilizing supervised ML to detect symptoms of faults and determine their causes.  By analysing 

the reference signal received power (RSRP) that users report during a given time frame, their technique can identify base station 

operational issues. Spotted certain problems with the base station lead to noticeable changes in RSRP readings and patterns of 
electromagnetic radiation in the area. In addition to allowing for the investigation of defects and the prevention of needless fault 

alerts, the framework's construction allowed for the differentiation of normal and non-normal operations in response to changing 

environmental conditions. The framework uses supervised ML to categorise the defect found once an abnormal operation is 

discovered [24]. 

 

Chen et al. (2020) offer a novel defect detection approach, which is based on active learning. This algorithm will provide 

excellent diagnosis performance with extremely few labelled training cases and this will save a lot of money. The major concept 

is selecting the most suitable unlabelled data to train and label. The final method of selecting them is uncertainty sampling. 

Experimental results showed that using the proposed methodology, many fewer labelled training cases would enable the same 

diagnosis accuracy compared to existing non-active methods, based on an LTE network fault model database. The proposed 

methodology is out to outperform the state-of-the-art in three other criteria as well on the same labelled instances figures [25].  
Shetty and Sarojadevi (2020) This system employs an ML method with the goal of optimizing the utilization of cloud computing 

resources. Methods for scheduling tasks can model both static and dynamic scenarios. In order for this system to function, the 

conditions must be dynamic and ever-changing. They suggest using a machine learning method to schedule incoming tasks in a 

way that takes makespan, QoS, energy usage, execution time, and load balancing into account. This enables classification of the 

most suitable algorithm to use with every task request as opposed to random assignment of a scheduling algorithm [26].  

 

Tamashiro et al. (2020) IaaS architecture of cloud computing and fault modelling of simulators based on it are outlined.  As 

the number of individuals seeking means to conduct business on the Internet continues to grow, cloud computing, online data 

storage, and the dispatch of online services have shown stratospheric increases in their popularity over the past couple of years. 

Due to these evolutions an increased importance is being placed on service fault tolerance, hardware-based or software-based. 

This is why it becomes so important that cloud environments place recognized and mitigating plans in such a manner that they 

create detection and response plans. Therefore, hypothetical vulnerability in cloud computing architecture was examined through 
cloud environment simulators in this study and the means of identifying and remedying the vulnerabilities were tested. Critical 

cloud administrators' most common problems and fault tolerance strategies formed the basis of this research [27]. 

 

Liang et al. (2019) a methodology for recognizing grey areas which is based on modelling the application scenarios.  The 

technique is capable of automatically evaluating application-to-application performance interference and developing a model of 

the relation between application-to-application performance interference and grey faults in different application contexts.  

Lastly, it determines the faulty node by itself through relational model that can notice the changes of the environment that then 

disrupt the performance. The effectiveness and accuracy of the proposed approach are confirmed by data received through the 

Google cluster and the virtual storage cluster environment based on Docker. Moreover, the method is very accurate and can 

recognize a grey issue in only 6.4 seconds [28]. 

 
Joseph and Mukesh (2019) identified security aspects that can be adopted on the cloud-based infrastructure security as 

service (IaaS), tested an attack model that captured a virtual machine snapshots, and performed analysis by using supervised ML 

techniques.  In order to distinguish between virtual machines that have been attacked and those that have not, supervised and 

unsupervised ML algorithms are fed the sequences of API calls from the memory snapshots of the affected machines.  By 

feeding the self-healing algorithm the collected collection of memory snapshots from the compromised virtual machines, it is 

possible to restore their functioning [29]. Ghahremani and Giese (2019) There is no doubt that using simulators is the gold 

standard for assessing SHS performance.  In order to evaluate the present status of practice for simulating SHS performance, a 

thorough literature analysis was carried out to determine what realistic fault injection scenarios are required.  In this paper, they 

lay out the current state of affairs and argue that SHS performance evaluations need to be more meticulous and comprehensive 

[30]. 

 

The Table II summarises findings of the literature review outlining focus of each study, its methodology, and main findings. 
Challenges and directions that the future holds. 
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Table 2: Summary of Literature on AI and Machine Learning Fault Detection 

Reference Study On Approach Key Findings Challenges Future Directions 

Porch et al., 

(2020) 

Fault detection 

in base stations 

Supervised ML using 

RSRP signal data 

Faults alter RSRP 

readings and EM 

patterns; framework 

distinguishes 

normal/abnormal to 
reduce false alarms 

Differentiating faults 

under changing 

environments 

Extend framework 

to include more 

signal features; 

adaptive learning 

for dynamic 
environments 

Chen et al. 

(2020) 

Active learning 

for fault 

diagnosis 

Uncertainty sampling 

with active learning 

Achieved 99% accuracy 

with fewer labels (66 vs 

557); better 

performance with 

limited data 

Selection of 

valuable data 

remains non-trivial 

Explore other 

sampling strategies; 

real-time adaptation 

in operational 

networks 

Shetty et.al. 

(2020) 

Cloud task 

scheduling 

optimization 

ML-based algorithm 

selection for dynamic 

scheduling 

Efficient task allocation 

improves QoS, energy 

use, and execution time 

Real-time prediction 

accuracy and 

scalability 

Integration with 

edge computing and 

IoT platforms 

Tamashiro et 

al. (2020) 

Fault modelling 

in IaaS-based 

cloud 

simulators 

Analyzed common 

failures and fault-

tolerance techniques 

used in cloud 

management 
platforms; evaluated 

them using simulation 

frameworks 

Cloud services must be 

designed with 

integrated failure 

detection and mitigation 

to improve fault 
tolerance in IaaS 

environments 

Limited real-time 

applicability; 

simulation accuracy 

and scope may not 

fully represent real-
world complexities 

Enhance simulator 

fidelity; integrate 

real-time 

monitoring tools; 

apply AI/ML-based 
predictive fault 

modelling 

Liang et al. 

(2019) 

Grey failure 

detection using 

performance 

interference 

modelling 

Developed an 

automatic detection 

model based on 

performance 

interference analysis 

in application 

scenarios; validated 

using Docker and 

Google cluster 

datasets 

Grey faults can be 

detected within 6.4 

seconds with high 

accuracy using 

performance 

relationship models 

Difficulty in 

modelling complex 

real-world 

application 

interferences; 

scalability to large 

systems 

Extend model to 

diverse cloud 

workloads and 

environments; 

incorporate DL to 

improve detection 

adaptability 

Joseph et.al. 
(2019) 

Self-healing 
security 

mechanism in 

private IaaS 

clouds 

Used memory 
snapshot API call 

sequences with 

supervised and 

unsupervised ML for 

attack detection; 

implemented a self-

healing algorithm for 

recovery 

Effective in classifying 
attacked vs. non-

attacked VMs and 

initiating automated 

recovery 

Dependence on the 
quality of memory 

snapshot data; 

potential latency in 

recovery 

Enhance learning 
models with larger 

datasets; reduce 

healing time; extend 

to hybrid/multi-

cloud environments 

Ghahremani 

et.al., (2019) 

Performance 

evaluation of 

self-healing 

systems 

Systematic literature 

review + simulation 

Simulators widely used; 

evaluation often lacks 

rigour 

Lack of realistic 

fault injection 

scenarios and 

metrics 

Develop 

standardized 

benchmarks and 

testbeds for SHS 

 

7. Conclusion and Future Scope 
In conclusion, cloud computing's quick development has changed the face of IT infrastructure by making resources available on 

demand and in scalable ways. Nevertheless, self-healing systems and problem detection have been significantly hindered by this 

transition. A holistic strategy combining conventional fault management methods with cutting-edge AI and ML approaches is 

necessary to guarantee cloud environments' high availability and reliability.  Traditional techniques of monitoring frequently fall 

short when faced with the intricacies of contemporary cloud systems, which is a growing concern for organisations that depend 

heavily on cloud services. Anomaly detection and recovery automation rely on techniques like supervised and unsupervised learning, 
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DL, and ensemble methods.  Keeping operational efficiency and downtime to a minimum requires the adoption of self-healing 

systems. These systems respond autonomously to recognised problems. Problems like as obtaining accurate models, obtaining high-

quality training data, and allocating sufficient computing resources for real-time analysis remain despite progress in AI/ML 

applications. Future research should be directed towards an increased flexibility of AI/ML models to be used in a dynamic cloud 

environment, the framework of implementing self-healing portability, across a wide variety of cloud environments, and discuss the 
promise of reinforcement learning to optimize recovery strategies on a case-by-case basis.  
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