
International Journal of AI, Big Data, Computational and Management Studies 

Noble Scholar Research Group | Volume 2, Issue 1, PP.66-75, 2021 

ISSN: 3050-9416 | https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I1P107 

 

 

Debugging ETL Failures: A Structured, Step-by-Step 

Approach 
 

Bhavitha Guntupalli 

Independent researcher, USA. 

 

Abstract: Debugging ETL problems can sometimes resemble chasing phantoms in a maze, especially with today's sophisticated 

data ecosystems encompassing cloud-native platforms, hybrid configurations, and legacy systems. This paper presents a logical, 

reasonable technique for definitely and surely fixing those flaws. Whether it's an undetectable data loss, a sudden task failure, or a 

performance constraint buried within transformation logic, the implications are significant: lost insights, inaccurate reports, and 

maybe financial fallout. The aim is to help analysts, data engineers, and platform teams to adopt a rigorous, sequential technique to 

rapidly and methodically find, diagnose, and fix ETL (Extract, Transform, Load) difficulties. We first define the primary causes of 

ETL failures and the debugging complexity observed in distributed systems, different data formats, dependability chains, and 

asynchronous scheduling. The work then presents diagnostic models comprising logging methods, alerting systems, and data 

validation and transformation stages. From open-source utilities to enterprise-level solutions, a spectrum of widely used tools is 

offered to enable teams to maximize their response procedures. This is not merely a theoretical guide; we also integrate the 

problem in a real-world case study illustrating how a team discovered, tracked, and corrected a significant ETL failure in a cloud-

hybrid environment using the techniques detailed. This website offers a complete manual for refining your ETL triage and 

debugging techniques, so methodically strengthening your data flow operations. 

 

Keywords: ETL Debugging, Data Pipeline Failures, Root Cause Analysis, Data Quality, Automation, Monitoring, Cloud ETL, 

Structured Logging, Data Transformation Errors, Pipeline Orchestration, Real-Time ETL, Apache Airflow, DataOps, Job Failures, 

Alerting Systems.   

 

1. Introduction 

In the data-centric environment of today, extract, transform, load, or ETL for short, constitutes the pillar of modern data 

engineering approaches. Before being entered into data warehouses or analytics systems for further use, raw data from many 

sources is compiled and then arranged in a neat and usable shape. From business intelligence dashboards to predictive models to 

real-time alarms to reporting tools, the correctness and dependability of ETL systems inside a corporation defines everything. ETL 

pipelines enable data assets to be pooled and turned on scale using consumer contact data, financial transactions, and IoT 

telemetry. Data operations are becoming more difficult as ETL pipelines get more sophisticated. In large corporations, ETL 

systems sometimes span hybrid environments, mixing on-site legacy systems with cloud-native platforms, streaming services, and 

outside APIs. Usually under control technologies such as Apache Airflow, Talend, or Informatica, these pipelines comprise 

numerous linked phases, dependencies, and scheduling systems. The several characteristics of data sources, formats, schemas, and 

business logic imply that even small changessuch as a modified timestamp format or a misconfigured transformation stepcan 

trigger cascade problems. Finding the basic explanation in these complex, sometimes asynchronous systems would be like looking 

for a needle in a haystack. 

 

Lack of ETL has major consequences. Late or erroneous data can cause poor corporate decisions, uninformed policies, weak 

points in compliance, and reputation damage. In sectors including finance, healthcare, and logisticswhere correct and timely data is 

absolutely vitalthe ongoing cost of a malfunctioning ETL system can be substantial. Teams often manage crises, in which case 

reactive incident response, long-term resolution timeframes, and recurrent problems ensue without a methodical debugging 

technique. Debugging becomes arbitrary based on tribal knowledge and ineffectual, weakening confidence in the entire data 

ecosystem. This essay aims to find the solution. Designed to enable data engineers, analytics teams, and platform operators to 

https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I1P107


Bhavitha Guntupalli / IJAIBDCMS 2(1), 66-75, 2021 

67 

rapidly identify, diagnose, and precisely and consistently address problems, it offers a logical, repeatable approach for 

troubleshooting ETL failures. Teams that apply a consistent strategy help to shorten the scope of root cause investigation, increase 

pipeline resilience, and reestablish data lifecycle stakeholder confidence. 

 

The strategy we will review transcends basic troubleshooting techniques. First, we will examine the anatomy of common ETL 

failure modes, including data quality problems, transformation logic mistakes, orchestration difficulties, and outside system 

failures. We will next go over a systematic debugging tool consistent with best standards in observability, structured logging, and 

error classification. We will discuss commercial practical tools and open-source, automatic detection, proactive alerting, and 

comprehensive context-collecting technologies. 

 
Figure 1: ETL Failure Debugging Process: Identify, Analyze, Fix, Validate 

 

To assist in visualizing the concepts, we present a real-world case study from a mid-sized organization that experienced a 

significant ETL failure in a cloud-hybrid context. We will show how methodically we uncovered the fault using controlled, testable 

corrective action, confirmed data assumptions, and well-organized records. Apart from resolving the immediate issue, this 

enhanced general pipeline dependability and team confidence help to fix other issues. This post will help teams aiming at lowering 

firefighting, speed debugging, and promoting a proactive, data-driven dependability culture. Both seasoned managers of enterprise-

scale ETL systems and beginners in precisely handling complexity and controlling the chaos resulting from data failures might find 

use for this information. Let first consider the sites and causes of ETL pipeline failure. 

 

2. Common ETL Failure Scenarios 

When ETL pipelines are working properly, they may look like they are running smoothly, but they can fail in many different 

ways at different stages of execution. This part looks at the most typical types of ETL failures, breaking them down by phase 

Extraction, Transformation, Load, and orchestrationand using real-world examples to help you understand each type of failure. 

 

2.1. Source Data Issues 

Failures in the extraction phase are typically the outcome of source systems that are unreliable or undergo changes. These 

problems can creep in stealthily and thus be multiplied in the downstream part of the system if they are not detected in time. 

 Schema Drift 

Schema drift is a concept that means that the base of the information is transformed without giving a warning. Thus, a 

marketing software might decide to change the API so that the field user_email is now replaced with email_address. If the 

ETL job is written to always expect user_email, then it will not be able to parse during the process, and this will lead to an 

unclear error message unless the schema validation is turned on. 

Example: An ETL task of an e-commerce company failed to collect the abandoned cart information because the CRM 

provider discontinued the cart_id field from the JSON payload without informing. Since no verification was present, the 

job was executed as normal, but the warehouse had gaps in certain records due to incomplete loading. 

 Data Format Inconsistencies 



Bhavitha Guntupalli / IJAIBDCMS 2(1), 66-75, 2021 

68 

The data format in CSV, JSON, or XML files is susceptible to changes without any warning. It can happen that the date 

format one day is MM-DD-YYYY and the next day you get it in YYYY/MM/DD. 

Example: To complicate things further, the regional partners of a global logistics company uploaded spreadsheets, 

causing the parser in the ETL job to break and daily operational reporting was delayed due to the inconsistent column 

orders and delimiters of the files. 

 Network/API Failures 

API endpoints might time out, be throttled or return intermittent errors. Such situations are extremely inconvenient, 

especially for real-time ETL jobs. 

Example: The financial service that obtained currency rates from a third-party API experienced several failed ETL runs 

because the number of rate limit violations was high during market peaks. The absence of retry logic caused the data to 

fall behind in downstream dashboards. 

 

2.2. Transformation Logic Errors 

After the data extraction, it was found that the data had a certain trend. The complexity of company rules and data handling at 

this stage makes logical errors more likely. 

 Computer Errors 

Logical mistakes in an SQL query or a Python/Scala transformation script at a more simple level can make the flow of 

data disruptive or result in data corruption. 

Example: A developer realized that she had mistakenly changed the sign of a profit calculationrevenue less costthus, 

destroying all the profitability calculations until the error was detected two days later. 

 Zero Point Exceptions 

For instance, during the process of data aggregation or type casting, if there is a null value that is not planned, it might 

cause the failure of the transformation script. 

Example: Standardized client location data by a data scientist; omitted to include null values in the state field. This 

resulted in a NullPointerException cutting batch processing for the complete consumer insights dashboard. 

 Unchecked exceptions 

Insufficient recording and monitoring could result in division by zero, out-of-range, or array indexing issues being 

unobserved and thus leading to silent failures. 

Example: Errors at certain times in a healthcare analytics pipeline were zero patient temperature values coming from 

malfunctioning sensors. Although noting one mistake, it was not reported further since it allowed the division operation of 

the logic of normalizing to be performed, thus leaving missing parts of patient information in reports. 

 

2.3. Load Failures 

Loading data into a warehouse or data lake could fail due to integrity and infrastructure problems even if the extraction and 

transformation go well. 

 Constraint Violations 

Problems such as main key conflicts, foreign key mismatches or unique constraint violations could cause data to not be 

entered or updated suitably. 

Example: The duplicate transaction IDs were being inserted by a sales data pipeline into the database that had a unique 

constraint. As a result of this, the load failure occurred and hence, the regional sales team was not able to get their daily 

performance reports. 

 Write Lock/Contention 

When concurrent ETL jobs or multiple users access the same table simultaneously, there is a possibility of a lock 

contention situation happening and hence, the writes get delayed. 

Example: Two ETL jobs that were overlapping attempted to update the same dimension table, which resulted in a 

deadlock in Snowflake. The scheduler ended the jobs after the time of inactivity was extended. 

 Storage Quota Exceedance 



Bhavitha Guntupalli / IJAIBDCMS 2(1), 66-75, 2021 

69 

In case there is a limited amount of disk or memory in the cloud storage or on the on-prem systems, then the writes might 

not be successful. 

Example: The on-prem data lake happened to be at its storage limit and the batch jobs that were coming in started to fail 

without any alert. The engineers were only able to find the problem after the users reported that data was missing for the 

weekly reports. 

 

2.4. Orchestration and Scheduling Problems 

ETL jobs require complex DAGs (Directed Acyclic Graphs) and orchestrators such as Apache Airflow or Azure Data Factory. 

Here failures don't involve the data but the way and time of running the jobs. 

 Missed Triggers 

A trigger that is done by a file drop, API event, or cron schedule can be missed because of wrong time synchronization, 

misconfigurations, or delays at the source. 

Example: A retail pipeline that was to wait for end-of-day sales data failed to start because the expected SFTP file was 

delayed for 30 minutesno longer than the configured wait time. Hence, no fallback or alert was here. 

 Dependency Failures 

If job B needs to be finished for job A to be done, the failure of B without logging can cause the next steps to be stuck or 

canceled. 

Example: A DAG for customer churn analysis used demographic enrichment as a prerequisite. When the enrichment 

query was not correct due to a typo, the churn job was therefore skipped, resulting in stale BI dashboards. 

 Timeouts 

Thus, if the job consists of complicated transformations or huge data, it may have to spend more time than the set limit, 

especially in shared environments. 

Example: A very transformation-heavy job on AWS Glue went over its 60-minute cutoff while end-of-quarter processing 

was going on, so half the month’s financial data had to wait until reprocessing was manually triggered before becoming 

available. 

 

2.5. Systemic Failures 

These types of failures are infrastructural in nature and thus they also impact the reliability of the ETL platform. 

 Resource Exhaustion 

The jobs may no longer be successful if the CPU, memory or disk I/O go beyond the set limits, which is especially true in 

shared or containerized environments. 

Example: A Spark ETL job that was running on Kubernetes crashed during the peak hours because the CPU that was 

given to this job was used up completely by the deployment of another team. This caused the missed SLA for the delivery 

of the analytics. 

 Container Crashes 

The tasks of an ETL that have been dockerized can suddenly stop working if the runtime environment is not configured 

properly or if there are conflicts in dependencies. 

Example: The ETL service that was using a customized python image failed because the pandas library version was 

missing. The container of the job exited abruptly and the orchestrator gave the generic “container exited” message; thus, it 

was difficult to find out the cause of the problem. 

 Permissions/Authentication Issues 

Failures may occur in access if the tokens are no longer valid, the credentials that have been revoked, or the IAM roles 

that are not set properly are involved. 

Example: The data pipeline was trying to write to a secure S3 bucket, but the attempt was not successful. The reason was 

that after the key rotation, the IAM policy was no longer valid for the pipeline. The last was not stated in the error log, and 

the ETL framework kept on retrying until it reached the global timeout. 

 

 



Bhavitha Guntupalli / IJAIBDCMS 2(1), 66-75, 2021 

70 

3.  Structured Debugging Framework 

Correcting ETL errors needs a consistent, rigorous procedure used across teams and technical platforms, not only gut feeling 

or ad hoc remedies. This five-phase approach shown here can be frequently used by data engineering teams to find, fix, and avoid 

ETL problems. One phase follows naturally on the next to promote proactive resilience instead of reactive triage. Let us review 

every level very closely. 

 

3.1. Phase I: Detection 

Usually beginning with a delayed dashboard, missing entries, or a job failure message, an ETL problem first surfaces. Still, by 

then damage could have already begun. Active detection layer is necessary to reduce time-to-discovery. Start with centralized log 

monitoring with tools such as Datadog, ELK Stack, or AWS CloudWatch. These instruments enable the identification of data 

volume, execution time, and error logs' deviations. Look for metrics and other machine learning-based approaches to identify 

anomalies before they begin to have effects downstream. Then apply systems of adaptive threshold alerting. Set Prometheus and 

Grafana, for instance, to raise alarms should a job diverge from its rolling average length by 50% or if the processed record count 

dramatically decreases. Form a complete picture of health by combining this with timely data file delivery, efficient schema 

validations, and expected responses from downstream APIs. Some validations can be automated with tools such as Great 

Expectations and Soda Core. 

 

3.2. Phase II: Localization 

Once a failure is discovered, the focus moves to identifying the troublesome location. This is especially challenging in 

sophisticated directed acyclic graphs (DAGs) or distributed systems defined by multiple interdependencies. Start by calling 

attention to the broken component. Visualization tools for failing jobs or nodes include Azure Data Factory, AWS Glue Studio, or 

Airflow UI. Discover red nodes, skipped phases, or jobs cut short too soon. Examine closely with lineage tools as dbt Docs, 

OpenLineage, or Amundsen. These give knowledge of upstream and downstream interactions, so helping to assess the "blast 

radius" of a failure. Five different reporting levels could be influenced by a corrupted dimension database. Furthermore, in this 

context the study of ordered log patterns is absolutely essential. Track down errors exactly using uniform recording forms, 

including JSON logs comprising job ID, timestamp, and error context. Visualizing and parsing logz.io or fluentd helps to organize 

chaos into knowledge. 

 

3.3. Phase III: Diagnosis 

Once the problem has been identified, determining its starting point comes second. Diagnosis sets off the RCAroot cause 

analysis. Use accepted methods of root cause analysis, including the 5 Whys, impact/time correlation matrices, or fishbone 

diagrams. Look at changes in environment, data, or configuration happening soon before the failure. Temporal correlation analysis 

allows you to correlate timestamps of recent code pushes, schema changes, or dependency modifications with the failure incidence 

time. Usually another job discovers the obvious reason for a work that began to fail soon after a data source changed their format. 

Great Expectations or Soda, dbt version control, GitHub diffs, and schema diffing tools help to clarify minute logical or structural 

changes. Use Trino, Athena, or Redshift EXPRESS plans for query profiling during updates to find redundant logic or 

unanticipated null values. 

 

3.4. Phase IV: Resolution 

Natural diagnosis helps to simplify life. The idea is to apply cures for the problem that fix it without causing more problems. 

Start with tactical interventions and handle unexpected data types, update schema references, or offer null checks. Using 

conditional logic, dynamically connect fields or, where suitable, discard meaningless columns. You also have to choose between 

"fix once" and "fix forward" approaches. "Fix forward" is the repair and letting of the pipeline; "fix once" is reversal to a 

previously chosen optimal condition. Usually safer but slower, the second approach is followed in conventional production 

methods. Using rollback techniques such as Snowflake Time Travel, Delta Lake versioning, or S3 object versioning, recover clean 

datasets in times of data damage. To address transient issues, mix this with retry and fallback approaches made possible by 

Airflow, Dagster, or Kubernetes Jobs. 

 



Bhavitha Guntupalli / IJAIBDCMS 2(1), 66-75, 2021 

71 

3.5. Phase V: Prevention 

The last step promotes changing reactive responses into proactive attempts to lower the chance of recurrence. First, expand the 

test scope. Run Great Expectations-based schema validations, run transformational logic unit tests, and contract testing under Pact 

or Pydantic to verify assumptions at the intake level. Then try to be more observable. Combine unique metrics, extensive logs, and 

distributed tracing with OpenTelemetry, Datadog APM, or New Relic. Record load success rates, transformational delay, row 

counts, and intake length, among other steps of the pipeline critical performance criteria. Match incrementally loaded systems with 

each other. Update data using Airbyte's CDC or Fivetran's incremental extraction; then use hash diffing or row-level checksums to 

validate changes. Use SLA-aware orchestration in increments. Depending on corporate importance, set your workflow 

orchestratorsuch as Airflow or Dagsterto apply alternative retry techniques, enforce concurrency limitations, and prioritize key 

activities. 

 

4. Case Study: Debugging an ETL Breakdown in a Healthcare Data Pipeline  

ETL failures not only have severe consequences but are also very expensiveparticularly in healthcare, which is a very sensitive 

area, where the availability of data on time directly affects the clinical results, the efficiency of operations and the compliance with 

regulations. This case study illustrates a real example of a healthcare analytics firm whose weekly data ingestion pipeline started to 

fail indiscriminately. Following the methodical five-phase debugging framework laid out in the preceding section, we see how the 

team methodically traced, investigated, and finally fixed the problem. 

 

4.1. Scenario Setup 

The company was a clinical data analytics platform that helped hospitals and healthcare providers make decisions by analyzing 

patient encounter records, lab reports, and treatment outcomes. The ETL pipeline, which is being talked about here, took in CSV 

exports that came from various clinical systems, then it used AWS Glue to process the data and finally, it uploaded the transformed 

data into Amazon Redshift for reporting and analytics. 

 

The pipeline architecture was as follows: 

 Data Source: Weekly CSV files dropped into an Amazon S3 bucket by external partners. 

 Extraction: AWS Glue Crawler detected new files and cataloged them in the Glue Data Catalog. 

 Transformation: An AWS Glue ETL job (PySpark) applied data cleaning, normalization, and enrichment logic. 

 Load: Transformed data was inserted into a Redshift cluster for reporting via QuickSight dashboards. 

 

The execution of the whole process was done by AWS Step Functions, while CloudWatch kept track of the job times, the 

number of errors and the amount of data transferred. 

 

4.2. Failure Description 

For more than a year, the ETL procedure has run without incident. The weekly intake work started to show intermittent 

breakdowns in the first quarter of the new year. The task might go perfectly at times; other times it would fail midway through the 

change and produce vague error messages like, Notably, neither the Redshift schema nor the Glue job code changed. The variation 

in the source CSV data supplied by outside clinics made the work difficult and hard to duplicate locally. 

 

4.3. Step-by-Step Debugging Walkthrough 

In a methodical way, the engineering team, with the help of the structured debugging framework, moved through each phase. 

 

4.3.1. Phase I: Detection 

The team had also set CloudWatch Alarms on the job status and runtime thresholds. These alarms were the ones that were 

triggered each time the failure happened; however, the logs at the beginning were not informative since there were no structured 

error messages in Glue.  

 Therefore, the team decided to 

 Turn on detailed job metrics in AWS Glue 



Bhavitha Guntupalli / IJAIBDCMS 2(1), 66-75, 2021 

72 

 Give loggers structured log outputs via logger.info(json.dumps(...)) at the crucial transformation stages 

 Install anomaly detection for row counts through Amazon Lookout for Metrics 

 

This allowed them to verify that the downtimes were not random but characterized a particular transformation step that was 

designed for a consistent schema. 

 

4.3.2..Phase II: Localization 

Focusing on the Glue ETL job running enrichment joins using demographic fields like patient_race and ethnicity, localization 

work looked toward the transformation phase. DAG tracking in AWS Glue Studio produced a failure node. Using S3 object data 

and AWS Glue Data Catalog version history, the team found task failures. Failure was linked, they found, to recently imported 

files from a certain plant. 

 

4.3.3. Phase III: Diagnosis 

RCA projects started with schemas and configurations compared using Data Catalog schemas and past S3 file snapshots. 

Found without the patient_race field, the new Clinic B files revealed a case of undocumented schema evolution by the source 

partner. Furthermore, changing the schema without using versioning safeguards was re-cataloging the partition by AWS Glue 

Crawlers. Based on patient_race, this produced PySpark changes likely to cause runtime problems. A temporal correlation study 

confirmed that issues started right away upon turning on the new data flow from the Clinic. 

 

4.3.4. Phase IV: Resolution 

To tackle the problem, the group had come up with a fix that consisted of multiple paths: 

 Instead of using strict schema assumptions, the team adopted a more flexible approach by dynamically mapping the 

columns with the help of df.columns introspection. 

 Changed the transformation logic in such a way that it checked only if the optional columns were present and no values 

were given; thus, the default ones or null were used. 

 A schema validation layer was introduced using Great Expectations, which was set to execute on each new batch in the 

staging zone. 

 They have also come up with a scheme to replace the patched jobs so that they can accept missing values without any 

problems and reprocessing of the affected weeks is done with S3 versioned data. 

 

The backoff policies of Step Functions were used to configure retries for the Glue job also. In this way, if there were any 

transient schema mismatches after the fallback logic is triggered, these could still be retried. 

 

4.3.5. Phase V: Prevention 

 Prevention initiatives were centered on reinforcing the pipeline so that it would not experience similar problems: 

 Changed the process of updating Glue Catalog's schema version from automatic (crawler) to manual (control). 

 Established contract testing via Pydantic models that specify the ingestion's allowed schema boundaries. 

 Added observability with Athena-powered data profiling, conducting simple tests on the existence of columns and the 

type of data before running ETL. 

 We have also delineated SLA tiers for each partner feed and adjusted Redshift WLM queues that allow us to give more 

importance to critical data loads during the reprocessing. 

 

4.4. Resolution and Remediation 

The solution was implemented in two stages: firstly, a hotfix to allow dynamic schema mapping, and secondly, a structural 

improvement that included the validation process and automated profiling. 

 

 

 



Bhavitha Guntupalli / IJAIBDCMS 2(1), 66-75, 2021 

73 

Results of observation after the fix were 

 ETL job success rates have come back to 100% within two cycles. 

 Mean time to detection and recovery (MTTD/MTTR) went down by 60%. 

 Trust in data freshness and completeness; as analysts, we have risen. 

 

Besides, QuickSight dashboards have been revamped to feature a “data quality badge” that signals if the latest dataset is 

validatedthus, clinical users are more confident when making decisions based on this data. 

 

4.5. Lessons Learned 

This incident turned out to be a pivotal pedagogical moment for the team and the wider organization. Some of the key points of 

lessons learned included: 

 Schema evolution is a normal phenomenon in decentralized data ecosystems. Unnecessarily rigid assumptions in 

transformations downstream are very fragile without the proper safeguards. 

 Validation has to be done at a point that is as close to the ingestion as possible. Discovering the schema change at the 

levels of S3 or Glue Catalog could have given the opportunity to fix the problem before it broke further downstream. 

 The faster you get to the problem, the less time the outage will last. The use of logging, anomaly detection, and good 

error messaging made it possible to localize and diagnose faster. 

 Prevention goes beyond technicalit is still cultural. The team has changed the part of the onboarding docs for partner 

clinics that relate to the inclusion of the communication protocols of schema change; thus, they have less likelihood of 

unexpected situations. 

 

In the end, this case became an affirmation of the significance of a clear step-by-step debugging process that spans from the 

detection, localization, diagnosis, and resolution to prevention in the form of a continuous improvement cycle. The ETL team has 

not only fixed the pipeline but also gained more resilience, observability, and trustworthiness of the data platform. 

 

5. Conclusion and Future Outlook  

As data becomes progressively more crucial to all organizational activities, the dependability and resilience of ETL (Extract, 

Transform, Load) pipelines have strategic relevance. This book investigates the anatomy of ETL failures, analyzes their causes at 

each stage, and provides a methodical five-phase debugging framework: Detection, Localization, Diagnosis, Resolution, and 

Prevention from extraction and transformation to loading and orchestration. This concept cuts across any one tool or instrument or 

platform. Whether your team uses custom-built solutions, Azure Data Factory, dbt, Snowflake, Apache Airflow, or AWS Glue, the 

ideas of this approach are typically relevant. 

 

The repeatability and scalability of this method establish its worth. Teams that transition from ad hoc troubleshooting to a 

methodical, sequential procedure can greatly reduce their mean time to detect (MTTD) and mean time to fix (MTTR) pipeline 

problems. This change enhances operational efficiency by strengthening the foundation for compliance, forecasting, and AI-driven 

decision-making, thus improving data quality, accelerating analytics, and so supporting predictions.Future of ETL debugging is 

defined by transformation. Large language models (LLMs) are turning out to be really helpful tools in log analysis and root cause 

identification. This is a pragmatic reality we live in today: picture asking a co-pilot to pinpoint the reasons for a failed 

transformation or describe a 2000-line error record. Tools based on OpenAI Codex or Datadog GPT-based assistant that 

incorporate LLMs for observability are under development in production. 

 

Starting to show themselves are self-healing pipelinessystems that recognize errors, employ fallback mechanisms, and 

independently fix them depending on prior trends and protocols. These systems acquire knowledge from prior experiences and 

adapt, hence surpassing basic retries. By including metadata-driven ETL systemswhich give schema, lineage, and operational 

metrics first prioritycompanies can build pipelines that are naturally more compliant, transparent, and durable. In the end, the 

complexity of contemporary data systems might be managed with the correct strategy; it is not decreasing. Including methodology, 



Bhavitha Guntupalli / IJAIBDCMS 2(1), 66-75, 2021 

74 

advanced tools, and a commitment to continuous development into one whole helps data operations teams to guarantee that their 

pipelines are not only operational but also robust, flexible, and ready for future difficulties. 

 

References 

1. Murar, Claudiu-Ionut. ETL Testing Analyzer. MS thesis. Universitat Politècnica de Catalunya, 2014. 

2. Casters, Matt, Roland Bouman, and Jos Van Dongen. Pentaho Kettle solutions: building open source ETL solutions with 

Pentaho Data Integration. John Wiley & Sons, 2010. 

3. Sai Prasad Veluru. “Hybrid Cloud-Edge Data Pipelines: Balancing Latency, Cost, and Scalability for AI”. JOURNAL OF 

RECENT TRENDS IN COMPUTER SCIENCE AND ENGINEERING (JRTCSE), vol. 7, no. 2, Aug. 2019, pp. 109–125 

4. Frampton, Michael. "ETL with Hadoop." Big Data Made Easy: A Working Guide to the Complete Hadoop Toolset. Berkeley, 

CA: Apress, 2014. 291-323. 

5. Jani, Parth. "UM Decision Automation Using PEGA and Machine Learning for Preauthorization Claims." The Distributed 

Learning and Broad Applications in Scientific Research 6 (2020): 1177-1205. 

6. Spalević, Petar, et al. "Automatization of the ETL process on the isolated small scale database system." 2016 24th 

Telecommunications Forum (TELFOR). IEEE, 2016. 

7. Roldán, María Carina. Pentaho Data Integration Quick Start Guide: Create ETL Processes Using Pentaho. Packt Publishing 

Ltd, 2018. 

8. Allam, Hitesh. Exploring the Algorithms for Automatic Image Retrieval Using Sketches. Diss. Missouri Western State 

University, 2017. 

9. Mukherjee, Rajendrani, and Pragma Kar. "A comparative review of data warehousing ETL tools with new trends and industry 

insight." 2017 IEEE 7th International Advance Computing Conference (IACC). IEEE, 2017. 

10. Tripathi, Subhashini Sharma. Learn Business Analytics in Six Steps Using SAS and R: A Practical, Step-by-Step Guide to 

Learning Business Analytics. Apress, 2016. 

11. LeBlanc, Patrick. Microsoft SQL Server 2012 step by step. Pearson Education, 2013. 

12. Kupunarapu, Sujith Kumar. "AI-Enabled Remote Monitoring and Telemedicine: Redefining Patient Engagement and Care 

Delivery." International Journal of Science and Engineering 2.4 (2016): 41-48 

13. Patil, P. S., Srikantha Rao, and Suryakant B. Patil. "Data integration problem of structural and semantic heterogeneity: data 

warehousing framework models for the optimization of the ETL processes." Proceedings of the International Conference & 

Workshop on Emerging Trends in Technology. 2011. 

14. Zheng, Nan, Abdussalam Alawini, and Zachary G. Ives. "Fine-grained provenance for matching & ETL." 2019 IEEE 35th 

International Conference on Data Engineering (ICDE). IEEE, 2019. 

15. Sai Prasad Veluru. “Optimizing Large-Scale Payment Analytics With Apache Spark and Kafka”. JOURNAL OF RECENT 

TRENDS IN COMPUTER SCIENCE AND ENGINEERING (JRTCSE), vol. 7, no. 1, Mar. 2019, pp. 146–163 

16. de Oliveira, Bruno Moisés Teixeira. A pattern-based approach for ETL systems modelling and validation. Diss. Universidade 

do Minho (Portugal), 2017. 

17. Arugula, Balkishan, and Sudhkar Gade. “Cross-Border Banking Technology Integration: Overcoming Regulatory and 

Technical Challenges”. International Journal of Emerging Research in Engineering and Technology, vol. 1, no. 1, Mar. 2020, 

pp. 40-48 

18. Freitas, André, et al. "Representing interoperable provenance descriptions for ETL workflows." The Semantic Web: ESWC 

2012 Satellite Events: ESWC 2012 Satellite Events, Heraklion, Crete, Greece, May 27-31, 2012. Revised Selected Papers 9. 

Springer Berlin Heidelberg, 2015. 

19. Casters, Matt, Roland Bouman, and Jos Van Dongen. Pentaho Kettle solutions: building open source ETL solutions with 

Pentaho Data Integration. John Wiley & Sons, 2010. 

20. Jani, Parth. "Real-Time Patient Encounter Analytics with Azure Databricks during COVID-19 Surge." The Distributed 

Learning and Broad Applications in Scientific Research 6 (2020): 1083-1115. 

21. Klımek, Jakub. "LinkedPipes ETL: Evolved Linked Data." The Semantic Web: ESWC 2016 Satellite Events, Heraklion, Crete, 

Greece, May 29–June 2, 2016, Revised Selected Papers 9989 (2016): 95. 

22. Mohammad, Abdul Jabbar. “Sentiment-Driven Scheduling Optimizer”. International Journal of Emerging Research in 

Engineering and Technology, vol. 1, no. 2, June 2020, pp. 50-59 



Bhavitha Guntupalli / IJAIBDCMS 2(1), 66-75, 2021 

75 

23. Sangaraju, Varun Varma. "Ranking Of XML Documents by Using Adaptive Keyword Search." (2014): 1619-1621. 

24. O’Riain, Seán, and Edward Curry. "Representing Interoperable Provenance Descriptions for ETL Workflows." The Semantic 

Web: ESWC 2012 Satellite Events: ESWC 2012 Satellite Events, Heraklion, Crete, Greece, May 27-31, 2012. Revised Selected 

Papers 7540 (2015): 43. 

 

 

 


	2.1. Source Data Issues
	2.2. Transformation Logic Errors
	2.3. Load Failures
	 Constraint Violations
	 Write Lock/Contention
	 Storage Quota Exceedance

	2.4. Orchestration and Scheduling Problems
	 Missed Triggers
	 Dependency Failures
	 Timeouts

	2.5. Systemic Failures
	 Resource Exhaustion
	 Container Crashes
	 Permissions/Authentication Issues

	3.  Structured Debugging Framework
	3.1. Phase I: Detection
	3.2. Phase II: Localization
	3.3. Phase III: Diagnosis
	3.4. Phase IV: Resolution
	3.5. Phase V: Prevention
	4.1. Scenario Setup
	4.2. Failure Description
	4.3. Step-by-Step Debugging Walkthrough
	4.3.1. Phase I: Detection
	4.3.2..Phase II: Localization
	4.3.3. Phase III: Diagnosis
	4.3.4. Phase IV: Resolution
	4.3.5. Phase V: Prevention

	4.4. Resolution and Remediation
	4.5. Lessons Learned


