International Journal of Al, Big Data, Computational and Management Studies
kK Noble Scholar Research Group | Volume 2, Issue 1, PP.66-75, 2021
ISSN: 3050-9416 | https://doi.org/10.63282/3050-9416.1JAIBDCMS-V211P107

Debugging ETL Failures: A Structured, Step-by-Step
Approach

Bhavitha Guntupalli
Independent researcher, USA.

Abstract: Debugging ETL problems can sometimes resemble chasing phantoms in a maze, especially with today's sophisticated
data ecosystems encompassing cloud-native platforms, hybrid configurations, and legacy systems. This paper presents a logical,
reasonable technique for definitely and surely fixing those flaws. Whether it's an undetectable data loss, a sudden task failure, or a
performance constraint buried within transformation logic, the implications are significant: lost insights, inaccurate reports, and
maybe financial fallout. The aim is to help analysts, data engineers, and platform teams to adopt a rigorous, sequential technique to
rapidly and methodically find, diagnose, and fix ETL (Extract, Transform, Load) difficulties. We first define the primary causes of
ETL failures and the debugging complexity observed in distributed systems, different data formats, dependability chains, and
asynchronous scheduling. The work then presents diagnostic models comprising logging methods, alerting systems, and data
validation and transformation stages. From open-source utilities to enterprise-level solutions, a spectrum of widely used tools is
offered to enable teams to maximize their response procedures. This is not merely a theoretical guide; we also integrate the
problem in a real-world case study illustrating how a team discovered, tracked, and corrected a significant ETL failure in a cloud-
hybrid environment using the techniques detailed. This website offers a complete manual for refining your ETL triage and
debugging techniques, so methodically strengthening your data flow operations.

Keywords: ETL Debugging, Data Pipeline Failures, Root Cause Analysis, Data Quality, Automation, Monitoring, Cloud ETL,
Structured Logging, Data Transformation Errors, Pipeline Orchestration, Real-Time ETL, Apache Airflow, DataOps, Job Failures,
Alerting Systems.

1. Introduction

In the data-centric environment of today, extract, transform, load, or ETL for short, constitutes the pillar of modern data
engineering approaches. Before being entered into data warehouses or analytics systems for further use, raw data from many
sources is compiled and then arranged in a neat and usable shape. From business intelligence dashboards to predictive models to
real-time alarms to reporting tools, the correctness and dependability of ETL systems inside a corporation defines everything. ETL
pipelines enable data assets to be pooled and turned on scale using consumer contact data, financial transactions, and loT
telemetry. Data operations are becoming more difficult as ETL pipelines get more sophisticated. In large corporations, ETL
systems sometimes span hybrid environments, mixing on-site legacy systems with cloud-native platforms, streaming services, and
outside APIs. Usually under control technologies such as Apache Airflow, Talend, or Informatica, these pipelines comprise
numerous linked phases, dependencies, and scheduling systems. The several characteristics of data sources, formats, schemas, and
business logic imply that even small changessuch as a modified timestamp format or a misconfigured transformation stepcan
trigger cascade problems. Finding the basic explanation in these complex, sometimes asynchronous systems would be like looking
for a needle in a haystack.

Lack of ETL has major consequences. Late or erroneous data can cause poor corporate decisions, uninformed policies, weak
points in compliance, and reputation damage. In sectors including finance, healthcare, and logisticswhere correct and timely data is
absolutely vitalthe ongoing cost of a malfunctioning ETL system can be substantial. Teams often manage crises, in which case
reactive incident response, long-term resolution timeframes, and recurrent problems ensue without a methodical debugging
technique. Debugging becomes arbitrary based on tribal knowledge and ineffectual, weakening confidence in the entire data
ecosystem. This essay aims to find the solution. Designed to enable data engineers, analytics teams, and platform operators to

https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I1P107

Bhavitha Guntupalli / IJAIBDCMS 2(1), 66-75, 2021

rapidly identify, diagnose, and precisely and consistently address problems, it offers a logical, repeatable approach for
troubleshooting ETL failures. Teams that apply a consistent strategy help to shorten the scope of root cause investigation, increase
pipeline resilience, and reestablish data lifecycle stakeholder confidence.

The strategy we will review transcends basic troubleshooting techniques. First, we will examine the anatomy of common ETL
failure modes, including data quality problems, transformation logic mistakes, orchestration difficulties, and outside system
failures. We will next go over a systematic debugging tool consistent with best standards in observability, structured logging, and
error classification. We will discuss commercial practical tools and open-source, automatic detection, proactive alerting, and
comprehensive context-collecting technologies.

IDENTIFY ANALYZE FIX VALIDATE

Figure 1: ETL Failure Debugging Process: Identify, Analyze, Fix, Validate

To assist in visualizing the concepts, we present a real-world case study from a mid-sized organization that experienced a
significant ETL failure in a cloud-hybrid context. We will show how methodically we uncovered the fault using controlled, testable
corrective action, confirmed data assumptions, and well-organized records. Apart from resolving the immediate issue, this
enhanced general pipeline dependability and team confidence help to fix other issues. This post will help teams aiming at lowering
firefighting, speed debugging, and promoting a proactive, data-driven dependability culture. Both seasoned managers of enterprise-
scale ETL systems and beginners in precisely handling complexity and controlling the chaos resulting from data failures might find
use for this information. Let first consider the sites and causes of ETL pipeline failure.

2. Common ETL Failure Scenarios

When ETL pipelines are working properly, they may look like they are running smoothly, but they can fail in many different
ways at different stages of execution. This part looks at the most typical types of ETL failures, breaking them down by phase
Extraction, Transformation, Load, and orchestrationand using real-world examples to help you understand each type of failure.

2.1. Source Data Issues
Failures in the extraction phase are typically the outcome of source systems that are unreliable or undergo changes. These
problems can creep in stealthily and thus be multiplied in the downstream part of the system if they are not detected in time.
e Schema Drift
Schema drift is a concept that means that the base of the information is transformed without giving a warning. Thus, a
marketing software might decide to change the API so that the field user_email is now replaced with email_address. If the
ETL job is written to always expect user_email, then it will not be able to parse during the process, and this will lead to an
unclear error message unless the schema validation is turned on.
Example: An ETL task of an e-commerce company failed to collect the abandoned cart information because the CRM
provider discontinued the cart_id field from the JSON payload without informing. Since no verification was present, the
job was executed as normal, but the warehouse had gaps in certain records due to incomplete loading.
e Data Format Inconsistencies

67

Bhavitha Guntupalli / IJAIBDCMS 2(1), 66-75, 2021

The data format in CSV, JSON, or XML files is susceptible to changes without any warning. It can happen that the date
format one day is MM-DD-YYYY and the next day you get it in YYYY/MM/DD.

Example: To complicate things further, the regional partners of a global logistics company uploaded spreadsheets,
causing the parser in the ETL job to break and daily operational reporting was delayed due to the inconsistent column
orders and delimiters of the files.

Network/API Failures

API endpoints might time out, be throttled or return intermittent errors. Such situations are extremely inconvenient,
especially for real-time ETL jobs.

Example: The financial service that obtained currency rates from a third-party API experienced several failed ETL runs
because the number of rate limit violations was high during market peaks. The absence of retry logic caused the data to
fall behind in downstream dashboards.

2.2. Transformation Logic Errors
After the data extraction, it was found that the data had a certain trend. The complexity of company rules and data handling at
this stage makes logical errors more likely.

Computer Errors

Logical mistakes in an SQL query or a Python/Scala transformation script at a more simple level can make the flow of
data disruptive or result in data corruption.

Example: A developer realized that she had mistakenly changed the sign of a profit calculationrevenue less costthus,
destroying all the profitability calculations until the error was detected two days later.

Zero Point Exceptions

For instance, during the process of data aggregation or type casting, if there is a null value that is not planned, it might
cause the failure of the transformation script.

Example: Standardized client location data by a data scientist; omitted to include null values in the state field. This
resulted in a NullPointerException cutting batch processing for the complete consumer insights dashboard.

Unchecked exceptions

Insufficient recording and monitoring could result in division by zero, out-of-range, or array indexing issues being
unobserved and thus leading to silent failures.

Example: Errors at certain times in a healthcare analytics pipeline were zero patient temperature values coming from
malfunctioning sensors. Although noting one mistake, it was not reported further since it allowed the division operation of
the logic of normalizing to be performed, thus leaving missing parts of patient information in reports.

2.3. Load Failures
Loading data into a warehouse or data lake could fail due to integrity and infrastructure problems even if the extraction and
transformation go well.

Constraint Violations

Problems such as main key conflicts, foreign key mismatches or unique constraint violations could cause data to not be
entered or updated suitably.

Example: The duplicate transaction IDs were being inserted by a sales data pipeline into the database that had a unique
constraint. As a result of this, the load failure occurred and hence, the regional sales team was not able to get their daily
performance reports.

Write Lock/Contention

When concurrent ETL jobs or multiple users access the same table simultaneously, there is a possibility of a lock
contention situation happening and hence, the writes get delayed.

Example: Two ETL jobs that were overlapping attempted to update the same dimension table, which resulted in a
deadlock in Snowflake. The scheduler ended the jobs after the time of inactivity was extended.

Storage Quota Exceedance

68

Bhavitha Guntupalli / IJAIBDCMS 2(1), 66-75, 2021

In case there is a limited amount of disk or memory in the cloud storage or on the on-prem systems, then the writes might
not be successful.

Example: The on-prem data lake happened to be at its storage limit and the batch jobs that were coming in started to fail
without any alert. The engineers were only able to find the problem after the users reported that data was missing for the
weekly reports.

2.4. Orchestration and Scheduling Problems
ETL jobs require complex DAGs (Directed Acyclic Graphs) and orchestrators such as Apache Airflow or Azure Data Factory.
Here failures don't involve the data but the way and time of running the jobs.

Missed Triggers

A trigger that is done by a file drop, API event, or cron schedule can be missed because of wrong time synchronization,
misconfigurations, or delays at the source.

Example: A retail pipeline that was to wait for end-of-day sales data failed to start because the expected SFTP file was
delayed for 30 minutesno longer than the configured wait time. Hence, no fallback or alert was here.

Dependency Failures

If job B needs to be finished for job A to be done, the failure of B without logging can cause the next steps to be stuck or
canceled.

Example: A DAG for customer churn analysis used demographic enrichment as a prerequisite. When the enrichment
query was not correct due to a typo, the churn job was therefore skipped, resulting in stale Bl dashboards.

Timeouts

Thus, if the job consists of complicated transformations or huge data, it may have to spend more time than the set limit,
especially in shared environments.

Example: A very transformation-heavy job on AWS Glue went over its 60-minute cutoff while end-of-quarter processing
was going on, so half the month’s financial data had to wait until reprocessing was manually triggered before becoming
available.

2.5. Systemic Failures
These types of failures are infrastructural in nature and thus they also impact the reliability of the ETL platform.

Resource Exhaustion

The jobs may no longer be successful if the CPU, memory or disk 1/0 go beyond the set limits, which is especially true in
shared or containerized environments.

Example: A Spark ETL job that was running on Kubernetes crashed during the peak hours because the CPU that was
given to this job was used up completely by the deployment of another team. This caused the missed SLA for the delivery
of the analytics.

Container Crashes

The tasks of an ETL that have been dockerized can suddenly stop working if the runtime environment is not configured
properly or if there are conflicts in dependencies.

Example: The ETL service that was using a customized python image failed because the pandas library version was
missing. The container of the job exited abruptly and the orchestrator gave the generic “container exited” message; thus, it
was difficult to find out the cause of the problem.

Permissions/Authentication Issues

Failures may occur in access if the tokens are no longer valid, the credentials that have been revoked, or the 1AM roles
that are not set properly are involved.

Example: The data pipeline was trying to write to a secure S3 bucket, but the attempt was not successful. The reason was
that after the key rotation, the IAM policy was no longer valid for the pipeline. The last was not stated in the error log, and
the ETL framework kept on retrying until it reached the global timeout.

69

Bhavitha Guntupalli / IJAIBDCMS 2(1), 66-75, 2021

3. Structured Debugging Framework

Correcting ETL errors needs a consistent, rigorous procedure used across teams and technical platforms, not only gut feeling
or ad hoc remedies. This five-phase approach shown here can be frequently used by data engineering teams to find, fix, and avoid
ETL problems. One phase follows naturally on the next to promote proactive resilience instead of reactive triage. Let us review
every level very closely.

3.1. Phase I: Detection

Usually beginning with a delayed dashboard, missing entries, or a job failure message, an ETL problem first surfaces. Still, by
then damage could have already begun. Active detection layer is necessary to reduce time-to-discovery. Start with centralized log
monitoring with tools such as Datadog, ELK Stack, or AWS CloudWatch. These instruments enable the identification of data
volume, execution time, and error logs' deviations. Look for metrics and other machine learning-based approaches to identify
anomalies before they begin to have effects downstream. Then apply systems of adaptive threshold alerting. Set Prometheus and
Grafana, for instance, to raise alarms should a job diverge from its rolling average length by 50% or if the processed record count
dramatically decreases. Form a complete picture of health by combining this with timely data file delivery, efficient schema
validations, and expected responses from downstream APIs. Some validations can be automated with tools such as Great
Expectations and Soda Core.

3.2. Phase I1: Localization

Once a failure is discovered, the focus moves to identifying the troublesome location. This is especially challenging in
sophisticated directed acyclic graphs (DAGs) or distributed systems defined by multiple interdependencies. Start by calling
attention to the broken component. Visualization tools for failing jobs or nodes include Azure Data Factory, AWS Glue Studio, or
Airflow Ul. Discover red nodes, skipped phases, or jobs cut short too soon. Examine closely with lineage tools as dbt Docs,
OpenLineage, or Amundsen. These give knowledge of upstream and downstream interactions, so helping to assess the "blast
radius" of a failure. Five different reporting levels could be influenced by a corrupted dimension database. Furthermore, in this
context the study of ordered log patterns is absolutely essential. Track down errors exactly using uniform recording forms,
including JSON logs comprising job ID, timestamp, and error context. Visualizing and parsing logz.io or fluentd helps to organize
chaos into knowledge.

3.3. Phase I11: Diagnosis

Once the problem has been identified, determining its starting point comes second. Diagnosis sets off the RCAroot cause
analysis. Use accepted methods of root cause analysis, including the 5 Whys, impact/time correlation matrices, or fishbone
diagrams. Look at changes in environment, data, or configuration happening soon before the failure. Temporal correlation analysis
allows you to correlate timestamps of recent code pushes, schema changes, or dependency modifications with the failure incidence
time. Usually another job discovers the obvious reason for a work that began to fail soon after a data source changed their format.
Great Expectations or Soda, dbt version control, GitHub diffs, and schema diffing tools help to clarify minute logical or structural
changes. Use Trino, Athena, or Redshift EXPRESS plans for query profiling during updates to find redundant logic or
unanticipated null values.

3.4. Phase IV: Resolution

Natural diagnosis helps to simplify life. The idea is to apply cures for the problem that fix it without causing more problems.
Start with tactical interventions and handle unexpected data types, update schema references, or offer null checks. Using
conditional logic, dynamically connect fields or, where suitable, discard meaningless columns. You also have to choose between
"fix once" and "fix forward" approaches. "Fix forward" is the repair and letting of the pipeline; "fix once" is reversal to a
previously chosen optimal condition. Usually safer but slower, the second approach is followed in conventional production
methods. Using rollback techniques such as Snowflake Time Travel, Delta Lake versioning, or S3 object versioning, recover clean
datasets in times of data damage. To address transient issues, mix this with retry and fallback approaches made possible by
Airflow, Dagster, or Kubernetes Jobs.

70

Bhavitha Guntupalli / IJAIBDCMS 2(1), 66-75, 2021

3.5. Phase V: Prevention

The last step promotes changing reactive responses into proactive attempts to lower the chance of recurrence. First, expand the
test scope. Run Great Expectations-based schema validations, run transformational logic unit tests, and contract testing under Pact
or Pydantic to verify assumptions at the intake level. Then try to be more observable. Combine unique metrics, extensive logs, and
distributed tracing with OpenTelemetry, Datadog APM, or New Relic. Record load success rates, transformational delay, row
counts, and intake length, among other steps of the pipeline critical performance criteria. Match incrementally loaded systems with
each other. Update data using Airbyte's CDC or Fivetran's incremental extraction; then use hash diffing or row-level checksums to
validate changes. Use SLA-aware orchestration in increments. Depending on corporate importance, set your workflow
orchestratorsuch as Airflow or Dagsterto apply alternative retry techniques, enforce concurrency limitations, and prioritize key
activities.

4. Case Study: Debugging an ETL Breakdown in a Healthcare Data Pipeline

ETL failures not only have severe consequences but are also very expensiveparticularly in healthcare, which is a very sensitive
area, where the availability of data on time directly affects the clinical results, the efficiency of operations and the compliance with
regulations. This case study illustrates a real example of a healthcare analytics firm whose weekly data ingestion pipeline started to
fail indiscriminately. Following the methodical five-phase debugging framework laid out in the preceding section, we see how the
team methodically traced, investigated, and finally fixed the problem.

4.1. Scenario Setup

The company was a clinical data analytics platform that helped hospitals and healthcare providers make decisions by analyzing
patient encounter records, lab reports, and treatment outcomes. The ETL pipeline, which is being talked about here, took in CSV
exports that came from various clinical systems, then it used AWS Glue to process the data and finally, it uploaded the transformed
data into Amazon Redshift for reporting and analytics.

The pipeline architecture was as follows:
e Data Source: Weekly CSV files dropped into an Amazon S3 bucket by external partners.
e Extraction: AWS Glue Crawler detected new files and cataloged them in the Glue Data Catalog.
e Transformation: An AWS Glue ETL job (PySpark) applied data cleaning, normalization, and enrichment logic.
e Load: Transformed data was inserted into a Redshift cluster for reporting via QuickSight dashboards.

The execution of the whole process was done by AWS Step Functions, while CloudWatch kept track of the job times, the
number of errors and the amount of data transferred.

4.2. Failure Description

For more than a year, the ETL procedure has run without incident. The weekly intake work started to show intermittent
breakdowns in the first quarter of the new year. The task might go perfectly at times; other times it would fail midway through the
change and produce vague error messages like, Notably, neither the Redshift schema nor the Glue job code changed. The variation
in the source CSV data supplied by outside clinics made the work difficult and hard to duplicate locally.

4.3. Step-by-Step Debugging Walkthrough
In a methodical way, the engineering team, with the help of the structured debugging framework, moved through each phase.

4.3.1. Phase I: Detection

The team had also set CloudWatch Alarms on the job status and runtime thresholds. These alarms were the ones that were
triggered each time the failure happened; however, the logs at the beginning were not informative since there were no structured
error messages in Glue.

e Therefore, the team decided to
e Turn on detailed job metrics in AWS Glue

71

Bhavitha Guntupalli / IJAIBDCMS 2(1), 66-75, 2021

e Give loggers structured log outputs via logger.info(json.dumps(...)) at the crucial transformation stages
o Install anomaly detection for row counts through Amazon Lookout for Metrics

This allowed them to verify that the downtimes were not random but characterized a particular transformation step that was
designed for a consistent schema.

4.3.2..Phase II: Localization

Focusing on the Glue ETL job running enrichment joins using demographic fields like patient_race and ethnicity, localization
work looked toward the transformation phase. DAG tracking in AWS Glue Studio produced a failure node. Using S3 object data
and AWS Glue Data Catalog version history, the team found task failures. Failure was linked, they found, to recently imported
files from a certain plant.

4.3.3. Phase Ill: Diagnosis

RCA projects started with schemas and configurations compared using Data Catalog schemas and past S3 file snapshots.
Found without the patient_race field, the new Clinic B files revealed a case of undocumented schema evolution by the source
partner. Furthermore, changing the schema without using versioning safeguards was re-cataloging the partition by AWS Glue
Crawlers. Based on patient_race, this produced PySpark changes likely to cause runtime problems. A temporal correlation study
confirmed that issues started right away upon turning on the new data flow from the Clinic.

4.3.4. Phase 1V: Resolution
To tackle the problem, the group had come up with a fix that consisted of multiple paths:
e Instead of using strict schema assumptions, the team adopted a more flexible approach by dynamically mapping the
columns with the help of df.columns introspection.
e Changed the transformation logic in such a way that it checked only if the optional columns were present and no values
were given; thus, the default ones or null were used.
e A schema validation layer was introduced using Great Expectations, which was set to execute on each new batch in the
staging zone.
e They have also come up with a scheme to replace the patched jobs so that they can accept missing values without any
problems and reprocessing of the affected weeks is done with S3 versioned data.

The backoff policies of Step Functions were used to configure retries for the Glue job also. In this way, if there were any
transient schema mismatches after the fallback logic is triggered, these could still be retried.

4.3.5. Phase V: Prevention
Prevention initiatives were centered on reinforcing the pipeline so that it would not experience similar problems:
e Changed the process of updating Glue Catalog's schema version from automatic (crawler) to manual (control).
e Established contract testing via Pydantic models that specify the ingestion's allowed schema boundaries.
e Added observability with Athena-powered data profiling, conducting simple tests on the existence of columns and the
type of data before running ETL.
e We have also delineated SLA tiers for each partner feed and adjusted Redshift WLM queues that allow us to give more
importance to critical data loads during the reprocessing.

4.4, Resolution and Remediation

The solution was implemented in two stages: firstly, a hotfix to allow dynamic schema mapping, and secondly, a structural
improvement that included the validation process and automated profiling.

72

Bhavitha Guntupalli / IJAIBDCMS 2(1), 66-75, 2021

Results of observation after the fix were
e ETL job success rates have come back to 100% within two cycles.
e Mean time to detection and recovery (MTTD/MTTR) went down by 60%.
e Trust in data freshness and completeness; as analysts, we have risen.

Besides, QuickSight dashboards have been revamped to feature a “data quality badge” that signals if the latest dataset is
validatedthus, clinical users are more confident when making decisions based on this data.

4.5. Lessons Learned
This incident turned out to be a pivotal pedagogical moment for the team and the wider organization. Some of the key points of
lessons learned included:
e Schema evolution is a normal phenomenon in decentralized data ecosystems. Unnecessarily rigid assumptions in
transformations downstream are very fragile without the proper safeguards.
e Validation has to be done at a point that is as close to the ingestion as possible. Discovering the schema change at the
levels of S3 or Glue Catalog could have given the opportunity to fix the problem before it broke further downstream.
e The faster you get to the problem, the less time the outage will last. The use of logging, anomaly detection, and good
error messaging made it possible to localize and diagnose faster.
e Prevention goes beyond technicalit is still cultural. The team has changed the part of the onboarding docs for partner
clinics that relate to the inclusion of the communication protocols of schema change; thus, they have less likelihood of
unexpected situations.

In the end, this case became an affirmation of the significance of a clear step-by-step debugging process that spans from the
detection, localization, diagnosis, and resolution to prevention in the form of a continuous improvement cycle. The ETL team has
not only fixed the pipeline but also gained more resilience, observability, and trustworthiness of the data platform.

5. Conclusion and Future Outlook

As data becomes progressively more crucial to all organizational activities, the dependability and resilience of ETL (Extract,
Transform, Load) pipelines have strategic relevance. This book investigates the anatomy of ETL failures, analyzes their causes at
each stage, and provides a methodical five-phase debugging framework: Detection, Localization, Diagnosis, Resolution, and
Prevention from extraction and transformation to loading and orchestration. This concept cuts across any one tool or instrument or
platform. Whether your team uses custom-built solutions, Azure Data Factory, dbt, Snowflake, Apache Airflow, or AWS Glue, the
ideas of this approach are typically relevant.

The repeatability and scalability of this method establish its worth. Teams that transition from ad hoc troubleshooting to a
methodical, sequential procedure can greatly reduce their mean time to detect (MTTD) and mean time to fix (MTTR) pipeline
problems. This change enhances operational efficiency by strengthening the foundation for compliance, forecasting, and Al-driven
decision-making, thus improving data quality, accelerating analytics, and so supporting predictions.Future of ETL debugging is
defined by transformation. Large language models (LLMSs) are turning out to be really helpful tools in log analysis and root cause
identification. This is a pragmatic reality we live in today: picture asking a co-pilot to pinpoint the reasons for a failed
transformation or describe a 2000-line error record. Tools based on OpenAl Codex or Datadog GPT-based assistant that
incorporate LLMs for observability are under development in production.

Starting to show themselves are self-healing pipelinessystems that recognize errors, employ fallback mechanisms, and
independently fix them depending on prior trends and protocols. These systems acquire knowledge from prior experiences and
adapt, hence surpassing basic retries. By including metadata-driven ETL systemswhich give schema, lineage, and operational
metrics first prioritycompanies can build pipelines that are naturally more compliant, transparent, and durable. In the end, the
complexity of contemporary data systems might be managed with the correct strategy; it is not decreasing. Including methodology,

73

Bhavitha Guntupalli / IJAIBDCMS 2(1), 66-75, 2021

advanced tools, and a commitment to continuous development into one whole helps data operations teams to guarantee that their
pipelines are not only operational but also robust, flexible, and ready for future difficulties.

References

1. Murar, Claudiu-lonut. ETL Testing Analyzer. MS thesis. Universitat Politecnica de Catalunya, 2014.

2. Casters, Matt, Roland Bouman, and Jos Van Dongen. Pentaho Kettle solutions: building open source ETL solutions with
Pentaho Data Integration. John Wiley & Sons, 2010.

3. Sai Prasad Veluru. “Hybrid Cloud-Edge Data Pipelines: Balancing Latency, Cost, and Scalability for AI”. JOURNAL OF
RECENT TRENDS IN COMPUTER SCIENCE AND ENGINEERING (JRTCSE), vol. 7, no. 2, Aug. 2019, pp. 109-125

4. Frampton, Michael. "ETL with Hadoop." Big Data Made Easy: A Working Guide to the Complete Hadoop Toolset. Berkeley,
CA: Apress, 2014. 291-323.

5. Jani, Parth. "UM Decision Automation Using PEGA and Machine Learning for Preauthorization Claims." The Distributed
Learning and Broad Applications in Scientific Research 6 (2020): 1177-1205.

6. Spalevi¢, Petar, et al. "Automatization of the ETL process on the isolated small scale database system." 2016 24th
Telecommunications Forum (TELFOR). IEEE, 2016.

7. Roldan, Maria Carina. Pentaho Data Integration Quick Start Guide: Create ETL Processes Using Pentaho. Packt Publishing
Ltd, 2018.

8. Allam, Hitesh. Exploring the Algorithms for Automatic Image Retrieval Using Sketches. Diss. Missouri Western State
University, 2017.

9. Mukherjee, Rajendrani, and Pragma Kar. "A comparative review of data warehousing ETL tools with new trends and industry
insight." 2017 IEEE 7th International Advance Computing Conference (IACC). IEEE, 2017.

10. Tripathi, Subhashini Sharma. Learn Business Analytics in Six Steps Using SAS and R: A Practical, Step-by-Step Guide to
Learning Business Analytics. Apress, 2016.

11. LeBlanc, Patrick. Microsoft SQL Server 2012 step by step. Pearson Education, 2013.

12. Kupunarapu, Sujith Kumar. "Al-Enabled Remote Monitoring and Telemedicine: Redefining Patient Engagement and Care
Delivery." International Journal of Science and Engineering 2.4 (2016): 41-48

13. Patil, P. S., Srikantha Rao, and Suryakant B. Patil. "Data integration problem of structural and semantic heterogeneity: data
warehousing framework models for the optimization of the ETL processes.” Proceedings of the International Conference &
Workshop on Emerging Trends in Technology. 2011.

14. Zheng, Nan, Abdussalam Alawini, and Zachary G. lves. "Fine-grained provenance for matching & ETL." 2019 IEEE 35th
International Conference on Data Engineering (ICDE). IEEE, 2019.

15. Sai Prasad Veluru. “Optimizing Large-Scale Payment Analytics With Apache Spark and Kafka”. JOURNAL OF RECENT
TRENDS IN COMPUTER SCIENCE AND ENGINEERING (JRTCSE), vol. 7, no. 1, Mar. 2019, pp. 146-163

16. de Oliveira, Bruno Moisés Teixeira. A pattern-based approach for ETL systems modelling and validation. Diss. Universidade
do Minho (Portugal), 2017.

17. Arugula, Balkishan, and Sudhkar Gade. “Cross-Border Banking Technology Integration: Overcoming Regulatory and
Technical Challenges”. International Journal of Emerging Research in Engineering and Technology, vol. 1, no. 1, Mar. 2020,
pp. 40-48

18. Freitas, André, et al. "Representing interoperable provenance descriptions for ETL workflows." The Semantic Web: ESWC
2012 Satellite Events: ESWC 2012 Satellite Events, Heraklion, Crete, Greece, May 27-31, 2012. Revised Selected Papers 9.
Springer Berlin Heidelberg, 2015.

19. Casters, Matt, Roland Bouman, and Jos Van Dongen. Pentaho Kettle solutions: building open source ETL solutions with
Pentaho Data Integration. John Wiley & Sons, 2010.

20. Jani, Parth. "Real-Time Patient Encounter Analytics with Azure Databricks during COVID-19 Surge." The Distributed
Learning and Broad Applications in Scientific Research 6 (2020): 1083-1115.

21. Klimek, Jakub. "LinkedPipes ETL: Evolved Linked Data." The Semantic Web: ESWC 2016 Satellite Events, Heraklion, Crete,
Greece, May 29-June 2, 2016, Revised Selected Papers 9989 (2016): 95.

22. Mohammad, Abdul Jabbar. “Sentiment-Driven Scheduling Optimizer”. International Journal of Emerging Research in

Engineering and Technology, vol. 1, no. 2, June 2020, pp. 50-59

74

Bhavitha Guntupalli / IJAIBDCMS 2(1), 66-75, 2021

23. Sangaraju, Varun Varma. "Ranking Of XML Documents by Using Adaptive Keyword Search.” (2014): 1619-1621.

24. O’Riain, Sean, and Edward Curry. "Representing Interoperable Provenance Descriptions for ETL Workflows." The Semantic
Web: ESWC 2012 Satellite Events: ESWC 2012 Satellite Events, Heraklion, Crete, Greece, May 27-31, 2012. Revised Selected
Papers 7540 (2015): 43.

75

	2.1. Source Data Issues
	2.2. Transformation Logic Errors
	2.3. Load Failures
	 Constraint Violations
	 Write Lock/Contention
	 Storage Quota Exceedance

	2.4. Orchestration and Scheduling Problems
	 Missed Triggers
	 Dependency Failures
	 Timeouts

	2.5. Systemic Failures
	 Resource Exhaustion
	 Container Crashes
	 Permissions/Authentication Issues

	3. Structured Debugging Framework
	3.1. Phase I: Detection
	3.2. Phase II: Localization
	3.3. Phase III: Diagnosis
	3.4. Phase IV: Resolution
	3.5. Phase V: Prevention
	4.1. Scenario Setup
	4.2. Failure Description
	4.3. Step-by-Step Debugging Walkthrough
	4.3.1. Phase I: Detection
	4.3.2..Phase II: Localization
	4.3.3. Phase III: Diagnosis
	4.3.4. Phase IV: Resolution
	4.3.5. Phase V: Prevention

	4.4. Resolution and Remediation
	4.5. Lessons Learned

