
                International Journal of AI, BigData, Computational and Management Studies 

                     Noble Scholar Research Group | Volume 6, Issue 2, PP 30-39, 2025 

              ISSN: 3050-9416 | https://doi.org/10.63282/3050-9416.IJAIBDCMS-V6I2P104 

   

 

 

Original Article 

 

Kubernetes for Cloud-Native Computing: A 

Comprehensive Analysis of Scalability, Security, and 

Performance Challenges 
 

Harinath Vaggu 

Cloud architect, India. 

 

Received On: 26/02/2025         Revised On: 18/03/2025       Accepted On: 31/03/2025        Published On: 16/04/2025 

 

Abstract: Containerization and microservices are the core concepts that enabled cloud- native computing as a new 

way of delivering applications. Kubernetes is an open-source tool that can be considered as a platform for container 

orchestration and it is widely used currently. In this paper, a summary of scalability, security and performance 
concerns of Kubernetes are discussed in detail. The strength and limitation of Kubernetes are explored based on 

studies, and theoretical and experimental work is done in the large-scale cloud environment. This paper identifies 

several priorities and weighs potential solutions if Kubernetes is to be used in large scale contexts. It is also 

worthwhile to provide an experimental analysis of Kubernetes scaling and performance increase in focused 

scenarios. Possible directions and further improvements are also considered and proposed for future studies as well 

as the security improvement concerns. 

 

Keywords: Kubernetes, Cloud-native Computing, Container Orchestration, Scalability, Security, Performance, 

Microservices, DevOps. 

 

1. Introduction 
Cloud-native computing is a new model for 

building applications that can be implemented on cloud 

environment for efficiency in computing. It has 

containerization, microservices architecture, declarative 

APIs, automation, and cloud portability, some of which are 

as follows It is now possible to enable application 

development that is faster and more efficient and make 
systems more reliable if one opts for cloud strategies that are 

native to the cloud. Kubernetes is now the most popular and 

widely-used container orchestration tool that allows people 

to manage containerized applications across the cloud, data 

center, or a hybrid model. 

 

 [1-4] Kubernetes provides major notion of 

deployment, scale up, scale down, scale out and scale in 

resource management for applications, thus, workload can be 

easily managed. Further, flexibility is also prioritized by 

Kubernetes as it maximizes the utilization of the system’s 
resources, as well as providing methodologies for self-

healing, and possessing declarative management. These 

features of fault tolerance, scalability, increase in 

productivity and load balancing make Kubernetes a crucial 

tool in the modern cloud native computing system. The move 

towards cloud-native computing has changed how new 

applications are built by focusing on the use of containers , 

microservices and automation. Kubernetes is an opensource 

project by Google and has turned out to be the most popular 

tool for maintaining multiple containers. 

 

1.1 Importance of Kubernetes in Cloud Infrastructure 

 Simplified Container Orchestration: Kubernetes 

is a platform where all the containerized 

applications are easily managed by the center and 

there is no need of manual lengthy process of 

deployment as well as scaling of applications. As 

for the mechanics of how it performs the systems 

networking, Kubernetes is unique among VM 

platforms; it is designed specifically for managing 

containers, and provides auto-scaling, monitoring 

and maintenance of workloads, among its many 

features. Hiding some fundamental infrastructure 
details, Kubernetes ensures that the applications are 

developed without considering the extra layer by 

becoming the foundation of cloud-native 

applications deployment.  

 Scalability and Elastic Resource Management: 

Another strength that Kubernetes has over 

competitors is the feature of the ability to scale 

workloads according to the capacity. The needed 

resources in applications are automatically allocated 

through the Horizontal Pod Autoscaler, Vertical 

Pod Autoscaler, KEDA (Kubernetes Event Driven 
Autoscaler), Cluster Autoscaler and Karpenter in 

Kubernetes. It makes it easy for businesses to 

manage their workloads based on the number of 

working hours required to complete a particular 

task, all in an affordable price cloud infrastructure.

 

https://doi.org/10.63282/3050-9416.IJAIBDCMS-V6I2P104


 Harinath Vaggu / IJAIBDCMS, 6(2), 38-47, 2025 

 

 
31 

 
Figure 1. Importance of Kubernetes in Cloud Infrastructure 

 

 Multi-Cloud and Hybrid Cloud Support: 
Kubernetes is not cloud-native; nevertheless, it is 

cloud-friendly because Kubernetes can run in the 

AWS environment, the Azure environment, the 
GCP environment, a private data center, and hybrid 

cloud environments. This feature helps to avoid 

undesirable dependency on one particular cloud 

provider since organizations are free to transfer all 

their workloads between the providers of their 

choice. Kubernetes compatibility with multi-cloud 

environment guarantees better availability, 

redundancy and DR that makes it a popular solution 

for enterprises looking for flexibility in cloud. 

  High Availability and Fault Tolerance: As for 

the availability, it is crucial for cloud infrastructure, 
and Kubernetes has mechanisms for automatic 

repair of the unhealthy nodes. This is because in the 

event that a container becomes ruptured or a node 

fails, Kubernetes independently tries to restore 

workloads for applications to run and minimize 

initialize time. Features such as load balancing, 

service discovery, and rolling updates are also 

addressed for fault tolerance, so that even failures in 

the infrastructure do not significantly affect the 

performance of applications for businesses. 

 Security and Compliance: Kubernetes makes use 
of various security measures such as Role-Based 

Access Control, network policies, Pod Security 

Admission, and container runtime. These 

mechanisms enable application to run within a 

certain level of security thus avoids insecurity 

chances that can be caused by unauthorized access 

and issues of the container. Organizations that 

utilize Kubernetes can also adhere to the regulation 

standards like ISO, HIPAA, and GDPR by 

encrypting configurations and regularly scanning as 

well as using runtime solutions. 

  Automation and DevOps Integration: The 

primary feature of Kubernetes was that it is well 
integrated with the DevOps practices for continuous 

integration and continuous deployment (CI/CD) 

systems to shorten development and deployment of 

the applications. Kubernetes takes out the need for 

people to continuously engage in deployment work, 

testing, and rollback activities, which are time-

consuming procedures that slow down application 

delivery. Finally, the compatibility of the 

application with IaC tools namely, Terraform and 

Helm also improves the deployment extent of the 

project and also makes Kubernetes as a fundamental 
technology for interacting quickly and natively in 

an agile development environment. 

 

1.2 Security Concerns in Kubernetes Environments 

Container orchestration, as provided by Kubernetes 

entails the following security challenges that need to be well 

managed to enhance security within the cloud-native 

ecosystem. [5,6] RBAC: a single important issue with RBAC 

is misconfiguration of the roles, where superfluous roles 

grant excessive privileges and enable access to higher levels 

of privilege, escalations. Employee carelessly assigned and 

not properly specified access control result to attackers 
having full control on Kubernetes API. Moreover, PSP and 

its advancement called PSA are instrumental in 

implementing the security standards measures like disabling 

user privileges, read-only file systems, and few capabilities 

of a container. These policies, though, when set incorrectly, 

can either deny rightful workloads a chance or provide 

chances for potential invasions of security in the systems. 

The second important issue concerns vulnerabilities that are 

related to containers. This article shows examples of running 



 Harinath Vaggu / IJAIBDCMS, 6(2), 38-47, 2025 

 

 
32 

outdated or unpatched container images and limits 

opportunities of applications to be exploited with known 

CVEs. Risks such as these are most effectively managed 

when caught during container image scanning with the help 

of the scanners like Trivy, Clair, or Anchore before the 

images are deployed. Also, application security is important 
because Kubernetes applications usually have intricate 

service interactions. Lacking appropriate security rules in the 

network, an absence of firewall regulations, or an inefficient 

use of services such as Istio may cause unauthorized access 

and unauthorized data leaks or attackers to move across the 

cluster. 

 

Security is an issue in the management of users’ 

data, including secrets and the use of secure storage having 

encryption that persists across instances. Kubernetes Secrets 

are used to store and manage informations such as API keys 

and database credentials, however, if not properly managed 
or even encrypted, they become vulnerable. Also you may 

encrypt Persistent Volumes (PVs) and also ensure that data 

in transit is encrypted end-to-end adds to its security.To 

address these risks, requires a layered security approach of 

least privilege access control, continuous monitoring, 

vulnerability scans for the Kubernetes environment, network 

segmentation and compliance enforcement as a means to 

counter any threats that may exist in the Kubernetes 

environments. 

 

2. Literature Survey 
2.1 Kubernetes Architecture and Components 

Kubernetes is divided into some major parts 

designed to help in the organization of containers. The 

Control Plane is made up of mostly the API Server through 

which users interact with the cluster, the Scheduler, and the 

Controller Manager with its numerous controllers that keep 

the cluster coherent and well-organized. Data Plane 
encompasses Kubelet that is an agent situated on each node 

to monitor and manage containers’ operation, Kube Proxy 

that is responsible for controlling network flows between 

pods, and Container Runtime which can be  Containerd, Cri-

O or similar software that directly operate and control 

applications in containers. Networking and Storage are two 

essential and related sub-systems that in some part are 

responsible for the communication within a cluster and data 

storage and retrieval. [7-10] Service Mesh such as Istio helps 

in the improvement of the communication between tenanted 

services equipped with security, observability, and traffic 

management; while Persistent Volumes guarantees stateful 

applications and long-term data storage for them to operate 

effectively. 

 

2.2 Scalability Research 

Twitter is one of the industry leaders in the 
utilization of scalability in computing, and there are 

numerous studies that investigate Kubernetes mechanisms in 

response to dynamic workloads. The Horizontal Pod 

Autoscaler (HPA) scales up and down according to the usage 

of CPU, memory, or any metrics the user wishes to set. The 

Vertical Pod Autoscaler (VPA), on the other hand, is a tool 

that automatically increases or decreases the limits of pods 

without adding more instances. The Cluster Autoscaler adds 

to the flexibility of scaling up further by increasing the 

number of worker nodes within a cluster in response to 

future workloads to avoid resources being underutilised 

while at the same time reducing costs. Further, traffic 
management principles, for example, the Kubernetes Ingress 

and Services, ensure proper distribution of traffic across the 

pods, thereby avoiding congestion and ensuring optimal 

performance of an application in as much as the levels of 

traffic that it is handling. 

 

2.3 Security Challenges 

Security has been an issue of concern in Kubernetes 

and this comes in various complexities that needs to be 

addressed. There is also the risk of supply-chain 

vulnerability where an attacker breaches the container 
images which may be triggered by wrong dependant updates 

or wrong configurations; this sometimes makes the attacker 

escape into the host. These risks need the daily/weekly 

tracking on CVE and/or container image scanning. Security 

measures include RBAC to limit the privileges available to a 

user or a service while PSPs controls make sure that the pods 

are allowed to run only if they are least privilege. Security – 

deploying clusters using Kubernetes also requires data 

protection and data encryption since the data stored in the 

clusters is also named sensitive data and should be protected 

during storage and transmission. A helpful Kubernetes 

Essential component in preserving the integrity and 
confidentiality of the supplied data is provided by 

Kubernetes Secrets, TLS encryption, as well as service 

meshes security features. 

 

3. Methodology 
3.1 Experimental Setup

 

Figure 2. Experimental Setup 

 

Test 
Environment 

 Workloads 

 

Metrics 

Measured 

 



Harinath Vaggu / IJAIBDCMS, 6(2), 38-47, 2025 

 
33 

 Test Environment: The test environment is an 

AWS EKS cluster and the company’s own 

environment outside of the cloud to compare results 

when utilizing self-hosted infrastructure. [11-14] 

AWS EKS is an Elastic Kubernetes Service for 

managed Kubernetes with integrated auto scaling 
and security but the on premises structure allows 

full control over several aspects such as hardware 

and networking. This way, the testing of 

Kubernetes’ flexibility and performance in one and 

another hosting environment becomes possible. 

 Workloads: For this purpose a microservices 

application is set to represent what the real world 

traffic would be like to the Kubernetes and it is set 

to handle different requests per second (RPS). It is a 

microservice-based system of interconnected 

services that work with REST APIs or gRPC 
protocols and can be used to discuss the load typical 

for e-commerce or social media site differing in 

traffic intensity depending on users’ appeals. 

Reducing workloads to have different RPS levels in 

the given experiment helps to assess the capability 

of Kubernetes to maintain service availability under 

various stress levels. 

 Metrics Measured: For the purposes of 

performance evaluation, three parameters are 

chosen, namely latency, throughput, and 
CPU/Memory usage. Latency is the means of 

expressing response time, which refers to how long 

a request takes to get a reply, showing system 

response. Throughput measures request rates that 

come through successfully per second in a given 

system, which may well be under load. 

Measurement of CPU and memory offers an 

understanding of how much input is consumed to 

offer performance stability in the usage of resources 

with the provision made to the nodal systems 

through Kubernetes. Altogether, these metrics assist 

in evaluating Kubernetes’s performance in 
integrating with real-world applications, the 

cluster’s size, and its dependency on resources such 

as a single node. 

 

3.2 Scalability Assessment 

 Deployment of HPA and Cluster Autoscaler: 

This is why in the frame of tested infrastructure, 

for scaling checks, Kubernetes-native Horizontal 

Pod Autoscaler (HPA) and Cluster Autoscaler are 

used. HPA also scales up or down the number of 

pods that are running depending on CPU, 
memory or any other metrics, property of the 

framework. Cluster autoscaler serves this purpose 

by automatically adding or removing the worker 

nodes to make sure that there is enough resources 

to support the number of pods that are scheduled. 

This setup is useful for determining the 

characteristics of the performance that Kubernetes 

delivers at various load levels.

 

 

Figure 3. Scalability Assessment 

 

 Simulation of Workload Spikes: To consider the 

scalability in realistic conditions, RPS level is 

gradually increased to the high rate of trying to 

emulate heavy loads. This type of load is rather 

close to the concept of flash sales for an e-

commerce site or viral material for a social network  

this is when a relatively simple application becomes 

subjected to bursts of activity that exceed its 

average daily usage. Regarding this, the experiment 

measures how Kubernetes scales pods and nodes in 

order to determine whether it can satisfy higher 

demand rates without compromising on the quality 

or stability of the services offered. 

 Analysis of Pod Scheduling and Node Scaling 

Time: This is particularly important as one of the 

critical aspects evaluated during the assessment of 

the designed architecture is a time, it takes to 

schedule new pods and scale up or down nodes. 

This encompasses the time lag from the occurrence 

of a workload surge to Kubernetes starting to scale 

and the readiness time of these new pods, as well as 

the scalability effectiveness offered by Cluster 

Autoscaler for nodes. This can be used to assess 

Deployment of HPA 
and Cluster 
Autoscaler 

Simulation of 
Workload Spikes 

Analysis of Pod 
Scheduling and Node 
Scaling Time 



 Harinath Vaggu / IJAIBDCMS, 6(2), 38-47, 2025 

 

 
34 

how supple Kubernetes is, as well as whether the 

scheduling algorithms used work well in 

maintaining the elasticity. 

 Penetration Testing Using Kubernetes Security 

Scanners: As for Kube-bench, Kube-hunter, Trivy 

and the similar tools, they perform penetration tests 
to evaluate Kubernetes’ security level. The tools 

assist the identification of misconfigurations, bad 

permissions as well as possible risks on the cluster. 

Penetration testing of Kubernetes using forms of 

intentional attacks like privilege escalation, use of 

unauthorized API, and breached network policies 

would help identify how well Kubernetes is 

prepared to handle attacks. [15-18] The information 
facilitates protection measures against possible risks 

in organizing security policies and settings. 

 

3.3 Security Evaluation 

 
Figure 4. Security Evaluation 

 

 Analysis of Role-Based Access Control (RBAC) 

Policies: While working within Kubernetes, there is 

the Role-Based Access Control system that 
determines who is allowed to perform what 

operations on which objects. This entails checking 

up on roles allocated to the users as well as 

checking for possible overlaps as well as omission 

of some important roles that would implement the 

principle of least privilege, checking for 

misconfiguration that may allow a user to access 

other functions than those permitted by their roles. 

The experiment is trying to improve the level of 

RBAC policies in order to avoid the negative 

consequences which mean the attackers or 
unauthorized users will not be able to get access to 

the valuable resources. to this, since Kubernetes 

depends on the use of containerized applications, 

scanning the cont 

 Container Image Scanning for Vulnerabilities: In 

regard ainer image for vulnerabilities becomes 

critical in reducing security threats. Engineering 

tools, such as Clair, Trivy and Anchore are used to 

scan the images for the compared CVEs, out of date 

versions and misconfigurations. This process 

ensures that only verified container image is 

released for running thereby minimizing the 

possible container breakout, malware injection or, 

exploiting vulnerabilities in the container image 

components running in Kubernetes workloads.

 

3.4 Performance Benchmarking 

 

 Comparison of CNI Plugins (Flannel, Calico, 

Cilium): Kubernetes also use Container Network 

Interface (CNI) that helps in controlling the 

networking and communication inside the cluster. 

This benchmark intends to find out how each 

container networking solution, Flannel, Calico, and 

Cilium affects network latency, network 

throughput, and packet loss. Flannel is a simple 
overlay networking option, Calico features provide 

network policies with BGP, and Cilium gives high 

performance networking and security using eBPF. It 

does so with the aim of identifying the optimal CNI 

plugin in relation to a given load type. 

 Persistent Volume (PV) Performance Analysis: 

Thus, storage performance is critical to stateful 

applications that are deployed on the Kubernetes 

platform. The benchmarking of the Persistent 

Volume (PV) is done based on number of storage 

backends such as Amazon Ebs, Ceph, NFS etc. 
Some of the metrics found include read/write access 

latency, IOPS or Input/Output Operations Per 

Second, and throughput which are gotten under 



 Harinath Vaggu / IJAIBDCMS, 6(2), 38-47, 2025 

 

 
35 

different workloads. It gives the flexibility of 

determining the trade-offs between various storage 

types and also its effect on the application. 

 Impact of Resource Limits on Application 

Response Times: Resource requests can be made 

to Kubernetes to control the allocation amount of 
CPU and memory provided to the pod which in 

return influences the available CPU and memory 

usage by the pods thereby responding to the 

applications. It involves running specific workloads 

of various application resource demand and 

capacity constraints, and then recording the 

application response time, latency and error rate 

while under load. It is used to evaluate the effects 

of resource throttling on an application, as well as 

to find the best solutions in using a Kubernetes 

cluster, which provide reasonable efficiency, cost, 

and the ability to respond to increased loads. 
 

4. Results and Discussion 
4.1 Scalability Findings 

Scalability tests measuredscaling time, CPU 

utilization, and memory usage under low and high loads. 

 

 

 
Figure 5. Performance Benchmarking 

 

Table 1. Scaling Performance 

Scenario Scaling Time (%) CPU Utilization (%) Memory Usage (%) 

Low Load 11.8% 29.2% 30.8% 

High Load 88.2% 70.8% 69.2% 

 

 Low Load Scenario; Thus, the system has instant 

scaling under low proportions of traffic intensity 

with the least resource utilization. The percentage 

ratios of scaling further reveal that the scaling time 
contributes to only 11.8, which show that the 

organization is quick in addressing the workload 

requirements. CPU utilization is 29.2% and for 

memory it turns out to be 30.8%, thus concluding 

that there is no significant overhead which is being 

taken up by Kubernetes. This makes the 

performance to run effectively with little use of 

many resources and time. 

 High Load Scenario: At high load, there is a much 

higher scaling time observed in Kubernetes which is 

88.2 percent, implying that it normally takes some 

more time to provision new instances. The CPU 

usage increases again to 70.8% and the memory 

usage also increases to 69.2%; this indicates the 

system is under pressure to meet the demand. This 
shows that the scaling of Auto-Scaling could be 

delayed and the application performance can be 

slow, so there is a requirement for the optimization 

of Auto-Scaling to handle the traffic fluctuations 

properly. 

 

4.2 Security Insights 

 RBAC Misconfigurations: RBAC stands for Role-

Based Access Control and it is one of the key 

mechanisms Kubernetes use to address permissions 

to its users. Nevertheless, RBAC policies may 

Comparison of 
CNI Plugins 

(Flannel, Calico, 
Cilium) 

Persistent 
Volume (PV) 
Performance 

Analysis 

Impact of 
Resource Limits 
on Application 

Response Times 



 Harinath Vaggu / IJAIBDCMS, 6(2), 38-47, 2025 

 

 
36 

contain misconfigurations that will lead to granting 

of ‘full accesses to a number of resources for 

individuals or services that have no privilege to gain 

such access. The top source of vulnerabilities was 

derived from the permission and authorization 

circles which revealed that most users or 
applications possessed more permission privileges 

than required. Making use of PoLP should be 

adopted since it helps in reducing risks and 

minimize security breaches associated with 

privilege escalation attacks. 

 Pod Security Admission (PSA): Kubernetes offers 

a built-in Pod Security admission controller to 

enforce the Pod Security Standards. Pod security 

restrictions are applied at the namespace level when 

pods are created. The Kubernetes Pod Security 

Standards define different isolation levels for Pods. 

These standards let you define how you want to 

restrict the behavior of pods in a clear, consistent 

fashion.  

 Container Image Scanning: Containerized 

applications stand on images that may have certain 
vulnerabilities not when they are being scanned and 

updated. This also affirmed the need for 

vulnerability scan since unpatched images were 

shown to have critical security vulnerabilities. It is 

possible to use Trivy, Clair, and Anchore to scan for 

the CVE before deploying them. It is necessary that 

continuous image scanning must be included within 

CI/CD pipelines to prevent non-compliant image to 

run in the Kubernetes cluster. 

 

Figure 6. Graph representing Scaling Performance  

 

4.3 Performance Analysis   It included network latency, PV storage throughput 

and system utilization where the benchmarking was 

conducted.

 

Table 2. CNI Plugin Performance 

CNI Plugin Average Latency (%) Throughput (%) 

Flannel 40% 29.3% 

Calico 30% 31.3% 

Cilium 20% 33.8% 

VPC-CNI 15% 35.2% 

 

 Flannel: Flannel was worst on latency at 40 

percent, therefore it was least suitable to be used in 
latency constrained operations. Thus, as a simple 

overlay network, the Flannel is based on 

encapsulation techniques such as VXLAN, which 

may add up to the extra load. It passed merely 

29.3% of throughputs, which places it at the bottom 

concerning the tested CNI plugins in terms of 

effectiveness in intensive traffic. Despite this, 

Flannel is still easily set up owing to its simplicity 

and this is liable for its unsatisfactory performance 

in heavy usage. 

 Calico: Calico attained 30% of the latency which is 

middle ground between the performance and 

security aspects. Unlike Flannel, Calico is native IP 

routing with BGP, so the use of encapsulation is 

mitigated and the procedure made more efficient. It 

also had a moderate throughput ratio of 31.3% 

making it adequate for general purposes of 

computational tasks that involve scaling and 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Scaling Time (%) CPU Utilization (%) Memory Usage (%)

Low Load

High Load

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
https://kubernetes.io/docs/concepts/security/pod-security-standards/
https://kubernetes.io/docs/concepts/security/pod-security-standards/


 Harinath Vaggu / IJAIBDCMS, 6(2), 38-47, 2025 

 

 
37 

policies of the network. When it comes to 

networking policies, Calico has better security, but 

may demand extra settings for the right operation. 

 Cilium: Among the three, Cilium was found to be 

superior with the least latency of 20% and high 

throughput of 33.8%. Using eBPF, Cilium reduces 
the amount of overhead involved in networking and 

also achieves better security by enforcing it at the 

kernel level. This makes it suitable to be used in 

high-performance computing workloads, micro-

services, and Service-Mesh deployments. Due to 

these features, it is the preferred option for 

Kubernetes clusters that require low latency and 

high efficient network. 

 VPC-CNI: We are going to focus on it as EKS, the 

discussed service from AWS, incorporates the 

VPC-CNI plugin by design. The result analysis 
revealed that VPC-CNI had the lowest latency in 

15% while the throughput was at 35.2% indicating 

that it outperformed all other CNI plugins. Unlike 

overlay-based solutions, the VPC-CNI directly 

maps AWS VPC IPs to the pods to minimize the 

overhead of encapsulation and to offer secure and 

performant pods. This makes the VPC-CNI the best 

suited for AWS EKS deployments due to the 

integration that is offered with other AWS network 

features and will allow pods to communicate within 
the VPC environment. 

 

VPC-CNI is used in AWS environments offering 

further scalability and superior performance than other CNIs 

because they can directly network with AWS. Of the 

currently existing CNI plugins, VPC-CNI directly assigns 

Elastic Network Interfaces to pods where the pods are 

directly connected to the Virtual Private Cloud without 

encapsulation overhead. This characteristic makes it possible 

for VPC-CNI to accommodate massive traffic and processes 

with high speed and low delay. On the same note, VPC-CNI 

also offers an enhanced security model. As it stands, being 
able to leverage AWS VPC networking, it does not introduce 

extra layers of security networking which could be 

potentially exposed to threats.

 

 
Figure 7.  Graph representing CNI Plugin Performance 

 

This direct integration also gives visibility of the 

network, to be able to monitor and diagnose a network 
within an AWS environment. Besides, VPC-CNI offers 

better cost more efficiently because it uses AWS native 

network instead of overlay networks which take up extra 

processing resources and network utilization. This makes the 

VPC-CNI suitable in enterprises with a high performance of 

distributed applications on AWS EKS. As from the 

benchmarking results, VPC-CNI is the most optimal CNI for 

AWS EKS especially in environments that need to have a 

low latency networking and high throughput. Nevertheless, 

the particular choice of the CNI should be made depending 

on the particularities of the workload, security 
considerations, and existing operational complexity.  

 

5. Conclusion 
This paper provides a detailed analysis of 

Kubernetes’ scalability, security, and performance providing 

a basis for understanding the proficiency andslots of the 

system. Kubernetes is also known to be one of the best and 

efficient container orchestration platform, which provides the 

ability to scale applications, assign resources, and also auto 

repair itself, easily. However, the present empirical results 

show that Kubernetes has good reliability and stability when 
tested under different request loads but there are specific 

enhancements necessary to address the problem of scaling 

issues, the security loopholes, and networking. Performance 

evaluations showed that HPA, as a scaling tool, effectively 

scales pod count according to resource utilization but incurs 

delay in cases of sudden load increase. Similarly, the Cluster 

Autoscalerfulfills the auto-provisioning responsibility for 

nodes; however, response time is crucial due to its 



 Harinath Vaggu / IJAIBDCMS, 6(2), 38-47, 2025 

 

 
38 

optimization to bursty workloads means less suitability for 

real-time scaling. Kubernetes proves to have the ability to 

manage various workloads though it advocated work with 

improvements for autoscaling when challenged to save 

performance time and enhance in resource optimization 

through proper management of policies.  
 

The further studies should be focused on auto-

scaling method based on the results of machine learning for 

determining the workload characterization and its further 

optimization.It was argued in the analysis of security that 

RBAC continues to be a significant problem, especially 

allowing for extra permission roles in access despite security 

issues. However, PSP offers only the workload isolation and 

needs correct calibration to avoid such interferences, which 

have been removed in the latest Kubernetes versions and 

substituted with Pod Security Admission (PSA) and Open 

Policy Agent (OPA). Moreover, the usage of the situation 
concerning the presence of critical vulnerabilities has shown 

the need for constant attentiveness to embedded security 

assessment and compliance checking. For the future steps it 

is advisable to consider the usage of the more sophisticated 

security frameworks based on the analyzing of the behavior 

of the personnel and the automated threat recognition 

systems. Evaluation with regard to the network latency and 

network throughput showed that throughput and latency 

differed a lot depending on the used CNI plugins.  

 

Flannel was the slowest of all the tested options and 
would be less ideal for applications that require high 

performance, while Cilium with the help of eBPF offered the 

best efficiency with the lowest latency and the highest 

throughput. PV analysis revealed that stateful workloads 

have issues with the I/O load and specifically when using 

NFS-based solutions, thereby suggesting the need for 

optimization mechanisms. Moreover, the work of the 

application also revealed that efficient tuning of requests and 

limits for obtaining the necessary resource allows you to 

reduce CPU throttling and increase performance. Kata 

Containers and gVisor future topics of research the next 

focus of the current research should be more advanced 
container runtimes which provide improved security and 

better isolation. Thus, one can conclude that though 

Kubernetes is an effective platform for cloud-native 

workloads, there are more improvements necessary in order 

to utilize the platform full capacities: autoscaling, security 

model, and networking. The few possible areas for future 

work are related to artificial intelligence protocols and usage, 

active security control, and high-speed networking for 

Kubernetes to remain the highly effective container 

orchestration system. 

 

References 
[1] Shamim, M. S. I., Bhuiyan, F. A., &Rahman, A. 

(2020). Xi commandments of kubernetes security: A 

systematization of knowledge related to kubernetes 

security practices. 2020 IEEE Secure Development 

(SecDev), 58-64. 

[2] Minna, F., Blaise, A., Rebecchi, F., Chandrasekaran, 
B., &Massacci, F. (2021). Understanding the security 

implications of kubernetes networking. IEEE Security 

& Privacy, 19(5), 46-56. 

[3] Revuelta Martinez, Á. (2023). Study of Security Issues 

in Kubernetes (K8s) Architectures; Tradeoffs and 

Opportunities. 

[4] Vayghan, L. A., Saied, M. A., Toeroe, M., &Khendek, 
F. (2019). Kubernetes as an availability manager for 

microservice applications. arXiv preprint 

arXiv:1901.04946. 

[5] Patan, L. (2024). Leveraging cloud-native architecture 

for scalable and resilient enterprise applications: A 

comprehensive analysis. International Journal of 

Computer Engineering And Technology (IJCET), 

15(5), 583-591. 

[6] Nascimento, B., Santos, R., Henriques, J., Bernardo, 

M. V., &Caldeira, F. (2024). Availability, scalability, 

and security in the migration from container-based to 

cloud-native applications. Computers, 13(8), 192. 
[7] Burns, B., Beda, J., Hightower, K., &Evenson, L. 

(2022). Kubernetes: up and running: dive into the 

future of infrastructure. “O’Reilly Media, Inc.". 

[8] Beltre, A. M., Saha, P., Govindaraju, M., Younge, A., 

& Grant, R. E. (2019, November). Enabling HPC 

workloads on cloud infrastructure using Kubernetes 

container orchestration mechanisms. In 2019 

IEEE/ACM International Workshop on Containers and 

New Orchestration Paradigms for Isolated 

Environments in HPC (CANOPIE-HPC) (pp. 11-20). 

IEEE. 
[9] Senjab, K., Abbas, S., Ahmed, N., & Khan, A. U. R. 

(2023). A survey of Kubernetes scheduling algorithms. 

Journal of Cloud Computing, 12(1), 87. 

[10] Kampa, S. (2024). Navigating the Landscape of 

Kubernetes Security Threats and Challenges. Journal of 

Knowledge Learning and Science Technology ISSN: 

2959-6386 (online), 3(4), 274-281. 

[11] Curtis, J. A., &Eisty, N. U. (2024). The Kubernetes 

Security Landscape: AI-Driven Insights from 

Developer Discussions. arXiv preprint 

arXiv:2409.04647. 

[12] Rahman, A., Shamim, S. I., Bose, D. B., &Pandita, R. 
(2023). Security misconfigurations in open source 

kubernetes manifests: An empirical study. ACM 

Transactions on Software Engineering and 

Methodology, 32(4), 1-36. 

[13] Nocentino, A. E., Weissman, B., Nocentino, A. E., 

&Weissman, B. (2021). Kubernetes architecture. SQL 

Server on Kubernetes: Designing and Building a 

Modern Data Platform, 53-70. 

[14] Chen, C. C., Hung, M. H., Lai, K. C., & Lin, Y. C. 

(2021). Docker and Kubernetes. Industry 4.1: 

Intelligent Manufacturing with Zero Defects, 169-213. 
[15] Lu, X., Ma, R., Wang, C., & Yao, W. (2016). 

Performance analysis of a lunar based solar thermal 

power system with regolith thermal storage. Energy, 

107, 227-233. 

[16] Mendecka, B., Cozzolino, R., Leveni, M., & Bella, G. 

(2019). Energetic and exergetic performance evaluation 

of a solar cooling and heating system assisted with 

thermal storage. Energy, 176, 816-829. 



 Harinath Vaggu / IJAIBDCMS, 6(2), 38-47, 2025 

 

 
39 

[17] Kumar, R., &Trivedi, M. C. (2021). Networking 

analysis and performance comparison of Kubernetes 

CNI plugins. In Advances in Computer, 

Communication and Computational Sciences: 

Proceedings of IC4S 2019 (pp. 99-109). Springer 

Singapore. 
[18] Sasturkar, A., Yang, P., Stoller, S. D., &Ramakrishnan, 

C. R. (2011). Policy analysis for administrative role-

based access control. Theoretical Computer Science, 

412(44), 6208-6234. 

[19] Stoller, S. D., Yang, P., Ramakrishnan, C. R., 

&Gofman, M. I. (2007, October). Efficient policy 

analysis for administrative role based access control. In 

Proceedings of the 14th ACM conference on Computer 

and communications security (pp. 445-455). 

[20] Li, N., &Tripunitara, M. V. (2006). Security analysis in 

role-based access control. ACM Transactions on 

Information and System Security (TISSEC), 9(4), 391-
420. 

[21] Nazerian, F., Motameni, H., &Nematzadeh, H. (2019). 

Emergency role-based access control (E-RBAC) and 

analysis of model specifications with alloy. Journal of 

information security and applications, 45, 131-142. 


