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Abstract - Computer vision applications span various fields including healthcare, security, autonomous vehicles, and 

augmented reality, enabling machines to interpret and analyze visual data. Facial Emotion Recognition (FER) is a 

subclass of healthcare applications that leverages computer vision to analyze and interpret human emotions from 

facial expressions. Facial emotion recognition also plays a vital role in human-computer interaction, with 

applications in security, and affective computing. This study suggests a deep learning (DL) based hybrid model 

integrating MobileNetV2 for efficient feature extraction and a Vision Transformer (ViT) for capturing global facial 

dependencies. The dataset obtained from Kaggle is used for training, which is then preprocessed and augmented. The 

trained model is deployed on a smartphone as an edge device, enabling real-time emotion recognition with improved 

privacy, low latency, and minimal computational overhead. During testing, facial images captured by the smartphone 

are preprocessed using the Haar Cascade algorithm before being fed into the model for classification. Performance 

evaluation using accuracy, recall, precision and F1-score demonstrates a high classification accuracy of 98.51%, 

confirming the model’s effectiveness. The proposed approach enhances on-device FER capabilities, making it a 

promising solution for emotion-aware applications in mobile healthcare and intelligent human-computer interactions. 

 

Keywords: Computer vision application, MobileNetV2, Facial Emotion Recognition, Vision Transformer, Haar 

Cascade algorithm 

 

1. Introduction 
Computer vision is revolutionizing various 

industries by enabling machines to interpret, analyze, and 

process visual data. In autonomous driving, computer 

vision plays a crucial role in object detection, lane 

tracking, and pedestrian recognition, enabling self-driving 

vehicles to navigate safely in dynamic environments. 

Additionally, in retail and marketing, computer vision is 

utilized for customer behavior analysis, automated 

checkout systems, and inventory management, improving 

operational efficiency and customer experience. In security 

and surveillance, it is widely used for facial recognition, 

anomaly detection, and real-time threat monitoring, 

enhancing public safety and automated access control 

systems [1]. With the increasing adoption of edge 

computing, deploying computer vision models on 

smartphones, IoT devices, and embedded systems ensures 

faster processing, reduced dependence on cloud 

infrastructure, and improved data privacy, making it a key 

technology for real-time applications in various domains. 

 

FER is crucial for enhancing human-computer 

interaction, enabling applications such as virtual assistants, 

sentiment analysis, and adaptive user interfaces [2]. In 

healthcare, FER aids in mental health assessment, early 

diagnosis of psychological disorders, and improving 

patient care through emotion-aware monitoring systems. 

Additionally, FER plays a significant role in security and 

surveillance, enabling intelligent authentication systems 

and real-time threat detection based on emotional cues. 

The rapid advancement of DL has revolutionized computer 

vision applications, enabling intelligent systems to analyze 

and interpret visual data with high accuracy. However, 

deploying DL models in real-world scenarios, particularly 

on edge devices, presents challenges due to computational 

constraints, latency requirements, and energy efficiency. 

Traditional DL architectures rely on cloud-based 

processing, which introduce communication delays and 

privacy concerns [3]. To address these issues, edge-based 

computer vision solutions have gained traction, allowing 

models to process data locally on resource-constrained 

devices while maintaining efficiency and security. 

 

Conventional FER models typically employ 

convolutional neural networks (CNNs) to extract spatial 

and temporal features. However, these models struggle 

with generalization in diverse environments and require 

extensive computational resources. Recent advances in 

transformer-based architectures, such as Vision 

Transformers (ViTs), have demonstrated superior feature 

extraction capabilities.  

 

This study proposes a hybrid DL model that integrates 

MobileNet V2 and ViT for edge-based FER. The 

contributions of this work are as follows: 

• Development of a hybrid DL model for robust 

facial emotion recognition. 
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• Optimization for edge-based deployment, 

ensuring low latency and efficient resource 

utilization and evaluate the performance of the 

model. 

 

2. Related Works 
Zhang et al. [4] proposed a FER method using 

CNN combined with image edge detection to eliminate the 

need for explicit feature extraction. The FER-2013 dataset, 

mixed with LFW data, was used in the work. The method 

normalized facial images and extracted edge information 

during convolution, preserving texture details. Max 

pooling was used for dimensionality reduction, and 

classification was performed using a Softmax classifier. 

The proposed method achieved an 88.56% recognition 

rate; however, the network complexity was the major 

limitation. Yang et al. [5] presented a lightweight, edge 

computing-based facial action unit (AU) detection system 

for real-time emotion recognition.  

 

The method utilized optimized algorithms on 

Raspberry Pi to process raw image data locally, reducing 

network overhead and improving efficiency. A distributed 

system was designed, separating front-end and back-end 

processing to minimize delay. The AU-based recognition 

algorithm was deployed in Docker containers for efficient 

execution. Results showed that response time was one-

third of ordinary computers, with accuracy up to 30% 

higher. The approach significantly reduced network 

bandwidth consumption and costs compared to cloud-

based methods. 

 

Chen et al. [6] proposed a deep CNN-based 

method using edge computing to address class imbalance 

and overfitting in expression databases. The dataset 

consisted of facial expression images enhanced using 

GAN-based augmentation framework. Experimental 

results demonstrated that the method achieved a higher 

recognition rate and improved classification accuracy. 

However, constraints in data augmentation using neutral 

expressions as the source domain limited the performance 

of the model. Hossain et al.  

 

[7] proposed a privacy-preserved automatic FER 

system, where IoT devices captured facial images and 

speech signals. A multi-secret sharing scheme was used to 

distribute the signals across edge clouds for preprocessing 

before transmission to the core cloud. A pre-trained CNN 

extracted deep-learned features, which were fused using 

deep sparse autoencoders (DSAE) to introduce non-

linearity, followed by an SVM classifier. The system was 

evaluated on the eNTERFACE’05 and RML databases, 

achieving recognition accuracies of 87.6% and 82.3%, 

respectively. 

 

Wu et al. [8] proposed an Edge-AI-driven 

framework for efficient and accurate FER on resource-

constrained edge devices. To address challenges such as 

pose variations, occlusion, illumination, and scale changes, 

two attention mechanisms were introduced namely 

Scalable Frequency Pooling (SFP) and Arbitrary-oriented 

Spatial Pooling (ASP). The ASP module captured spatial 

information in multiple directions, while the SFP module 

operated in the wavelet frequency domain to enhance 

feature representation. The framework was evaluated on 

FER2013, RaFD, and SFEW datasets, demonstrating 

improved accuracy and computational efficiency.  

 

Partial cloud offloading was implemented to 

balance inference speed and accuracy. However, the 

system’s performance relied on cloud connectivity, but 

lack of optimization for real-time applications. Pascual et 

al. [9] proposed Light-FER system designed for resource-

constrained edge devices. The model was based on 

compression techniques, including pruning to remove less 

important connections and quantization to half-precision 

for reduced memory consumption. The system was 

evaluated on the FER2013 dataset. DL compilers, such as 

TensorRT, were utilized to enhance inference speed. 

However, the face detector struggled with steep-angle 

poses. 

 

Makhmudkhujaev et al. [10] proposed the Local 

Prominent Directional Pattern (LPDP), an edge-based 

descriptor for FER to address issues like noise and 

positional variations. LPDP analyzed the statistical 

information of a pixel’s neighborhood to extract significant 

edges, ensuring robustness against distortions while 

avoiding noisy edges. Extensive experiments were 

conducted on well-known facial expression datasets. 

However, the study did not explore its performance across 

different lighting conditions or real-time applications.  

 

Ajay et al. [11] proposed a real-time facial 

emotion recognition system for passenger safety using 

Local Binary Pattern (LBP) and a Binary Neural Network 

(BNN) feature, implemented on an FPGA. The system 

utilized the Viola-Jones algorithm for facial detection, 

followed by LBP feature extraction and classification 

using a quantized BNN. The model was trained on the 

FER-2013 dataset and deployed on FPGA, significantly 

improving inference speed compared to software-based 

implementations. The method classified emotions into six 

states and demonstrated superior performance over 

CNN/BNN models without preprocessing.  

 

Xu et al. [12] proposed a lightweight CNN-based 

neural network for FER on edge devices by enhancing the 

Visual Geometry Group 19 (VGG-19) model with residual 

learning. Each block’s input was added to its output to 

improve feature propagation. Model compression 

techniques, including pruning and post-training 

quantization, were applied to reduce size while 

maintaining accuracy. The model achieved better accuracy 

compared to mainstream lightweight models. However, the 

study did not fully address inner-class classification 

challenges or further parameter reduction while preserving 

accuracy.  
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Pathak et al. [13] proposed a low-cost IoT edge 

computing system combined with a multi-headed 1D-CNN 

model for real-time monitoring and classification of baby 

facial expressions. A dataset of 600 images (200 per 

category) was used. The method involved face detection, 

cropping, feature extraction using a deep neural network, 

and training a 1D-CNN model on 128-dimensional 

embeddings. The optimized model was deployed on an 

edge device and operated as a REST API web service.  

However, memory and computational constraints of the 

edge device limited model size, and prolonged offline 

storage required periodic cloud synchronization. 

 

Wang et al. [14] proposed a DL model for 

multimodal emotion recognition by fusing EEG signals 

and facial expressions. DEAP and MAHNOB-HCI 

datasets were used by the pre-trained CNN for facial 

feature extraction, with an attention mechanism enhancing 

crucial expression frames. CNNs were also applied to EEG 

signals using local and global convolution kernels to 

capture spatial features from different brain regions. The 

fused features were classified to predict valence and 

arousal labels. The model achieved 96.63% and 97.15% 

accuracy for valence and arousal on DEAP, and 96.69% 

and 96.26% on MAHNOB-HCI. Chaudhari et al. [15] 

investigated FER using a fine-tuned ViT and compared its 

performance with ResNet-18. The researchers merged 

three datasets after addressing class imbalances. The 

dataset was split into training, validation, and testing sets. 

The study highlighted the potential of ViT models for FER 

but noted limitation, including high computational costs.  

 

Umer et al. [16] proposed a FER system using a 

CNN and data augmentation techniques using CK+ and 

GENKI-4k database. The system consisted of four 

components namely face detection, DL-based feature 

extraction, data augmentation, and fine-tuning of the 

trained CNN model. Facial images were converted to 

grayscale to improve processing speed. Data augmentation 

techniques were applied to enhance learning parameters 

and reduce overfitting. The method attained an accuracy of 

94.67 using GENKI-4k database. 

 

2.1 Research Gap 

Despite significant advancements in FER using 

deep learning, several challenges remain unaddressed. 

Existing studies often face network complexity issues, 

limiting their deployment on resource-constrained edge 

devices. While some approaches reduce bandwidth 

consumption and costs compared to cloud-based methods, 

their reliance on cloud connectivity hinders real-time 

performance. Additionally, constraints in data 

augmentation and the use of neutral expressions as the 

source domain affect model generalization [6]. Many 

models struggle with facial detection under steep-angle 

poses and varying lighting conditions, impacting 

robustness. Furthermore, inner-class classification 

challenges and the need for parameter reduction while 

maintaining accuracy remain unresolved. Memory and 

computational limitations of edge devices further restrict 

model size, necessitating periodic cloud synchronization 

for prolonged offline storage. 

 

3. Materials And Methods 
The proposed FER system leverages a hybrid DL 

model combining MobileNetV2 for lightweight feature 

extraction and a ViT for capturing global facial 

dependencies. The dataset obtained from Kaggle is used 

for training. Preprocessing and augmentations are 

performed on the dataset to enhance feature learning. After 

training, the model is deployed on a smartphone as an edge 

device, ensuring real-time emotion detection with minimal 

computational overhead. During testing, the smartphone 

captures facial images, applies Haar Cascade-based face 

detection, and processes them through the trained model 

for emotion classification. The block schematic of the 

proposed method is given in Figure 1. 

 

3.1 Dataset Description 

The dataset used in this study is sourced from the 

Kaggle repository and consists of images representing 

seven basic human emotions namely Fear, Disgust, Anger, 

Happiness, Sadness, Contempt, and Surprise [17]. Each 

image is preprocessed to 48x48 pixel grayscale format.  

The dataset serves as a benchmark for FER models, 

supporting DL-based classification tasks. The images 

capture various expressions under different lighting 

conditions, facial orientations, and skin tones, making the 

dataset suitable for training robust emotion recognition 

models. Sample images from the dataset are shown in 

Figure 2. 

 

3.2 Data preprocessing and augmentation 

Several preprocessing steps are applied to 

improve the quality of images for the FER model. Image 

normalization is performed by scaling pixel values to a 

range of [0,1] or [-1,1], ensuring stable model training. To 

improve model generalization and robustness, data 

augmentation methods, namely zooming, random 

rotations, horizontal flipping, brightness adjustments, and 

slight translations are applied. These augmentations help 

mitigate overfitting by introducing variations that mimic 

real-world conditions, allowing the model to learn diverse 

facial expressions across different perspectives and 

environments. Once the image is captured, preprocessing 

occurs on the smartphone to prepare the raw data for 

emotion recognition. The first step in preprocessing is face 

detection, where algorithms like Haar Cascades, detect the 

face within the captured frame. Haar Cascades is a feature-

based face detection algorithm that uses Haar-like features 

to identify patterns such as edges and textures in an image. 

It employs an integral image for fast computation and an 

AdaBoost classifier to select the most relevant features. 

The detection process follows a cascade structure, where 

simple classifiers eliminate non-face regions early, while 

complex ones refine detection. The feature F is computed 

as per Equation 1. 

 

𝐹 = ∑(𝑃𝑖𝑥𝑒𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑛 𝑤ℎ𝑖𝑡𝑒 𝑟𝑒𝑔𝑖𝑜𝑛) −
∑(𝑝𝑖𝑥𝑒𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑛 𝑏𝑙𝑎𝑐𝑘 𝑟𝑒𝑔𝑖𝑜𝑛)          (1) 
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The integral image is used for rapid computation as per 

Equation 2. 

𝐼(𝑥, 𝑦) = 𝐼(𝑥 − 1, 𝑦) + 𝐼(𝑥, 𝑦 − 1) − 𝐼(𝑥 −
1, 𝑦 − 1) + 𝑃(𝑥, 𝑦)      (2) 

 
Figure 1. Block schematic of the suggested system 

 
Figure 2. Sample images in the dataset 
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Where 𝐼(𝑥, 𝑦) is the integral image at point (𝑥, 𝑦) 

and 𝑃 (𝑥, 𝑦) is the original pixel intensity. 

This hierarchical approach ensures real-time detection, 

making it efficient for edge-based facial emotion 

recognition on smartphones. This ensures that only the 

face is processed, isolating it from the background or other 

objects. Following face detection, face alignment takes 

place, where facial landmarks such as the nose, eyes, and 

mouth are identified and used to align the face to a 

standard orientation, improving the consistency of the 

analysis. The face is then cropped from the image, and the 

resulting region is resized to a fixed dimension, typically 

224x224 pixels, suitable for feeding into the emotion 

recognition model. Lastly, the pixel values are normalized 

to a standard to help the model perform more efficiently.  

The detected faces are given to the proposed hybrid model 

for facial emotion recognition. 

 

3.3 Model Development 

To achieve efficient and accurate FER on edge 

devices, the proposed model combines MobileNetV2 for 

feature extraction with a ViT for enhanced attention-based 

feature learning. MobileNetV2 transforms input facial 

images into a set of low-dimensional, high-level feature 

representations. These extracted features are then passed to 

the ViT for further processing. 

 

3.3.1 MobileNet V2 

MobileNetV2 is a lightweight CNN designed for 

edge devices. It employs depthwise separable convolutions 

to reduce computational complexity while maintaining 

high accuracy [18]. Figure 3 illustrates the basic 

architecture of MobileNetV2. The MobileNetV2 

architecture consists of three main components. Depthwise 

separable convolutions reduce computational cost by 

splitting the convolution into a depthwise and a pointwise 

operation. Inverted residual blocks allows efficient feature 

learning by connecting input and output through a 

lightweight bottleneck structure. 

 
Figure 3. Basic architecture MobileNetV2 

 

Linear bottleneck layers prevent loss of 

information by maintaining low-dimensional feature maps. 

Mathematically, the output of a depthwise separable 

convolution is computed as per Equation 3. 

𝑌 = 𝜎(𝑊𝑑 ∗ 𝑋) +
𝜎(𝑊𝑝 ∗ 𝑌𝑑)  

   (3) 

Where the depthwise convolution kernel is 

denoted by 𝑊𝑑, 𝑊𝑝 denotes the pointwise convolution 

kernel, input feature map is denoted by 𝑋 , 𝑌𝑑 is the 

depthwise convolved output, 𝜎 (⋅) represents the activation 

function. The inverted residual block is defined as per 

Equation 4 to Equation 6. 

𝑍 =

𝜎(𝑊1×1 
𝑒𝑥𝑝𝑎𝑛𝑑

⋅ 𝑋) 

  

   (4) 

𝑌𝑑 = 𝜎(𝑊𝑑 ∗
𝑍)  

                     

(5) 

𝑌 =
𝑊1×1 

𝑟𝑒𝑑𝑢𝑐𝑒 ∗ 𝑌𝑑) 

  

   (6) 

Where 𝑊1×1 
𝑒𝑥𝑝𝑎𝑛𝑑

 is the expansion layer, 𝑊𝑑 is the 

depthwise convolution, 𝑊1×1 
𝑟𝑒𝑑𝑢𝑐𝑒  is the reduction layer. 

 

3.3.2 Vision Transformer  

The ViT employs a self-attention mechanism to 

capture global dependencies in images [19]. Figure 4 

depicts the general architecture of the ViT, which 

processes images by dividing them into patches, encoding 

them with positional embeddings. 
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Figure 4. General architecture of Vision transformer 

 

ViT divides an image into fixed-sized patch and 

then embeds them into a lower-dimensional space using a 

trainable linear projection as per Equation 7. 

𝑧0 =
[𝑥1𝐸; 𝑥2𝐸; … ; 𝑥𝑁𝐸] +
𝐸𝑝𝑜𝑠  

  (7) 

 

Where 𝑥1 represents the flattened image patches, 

𝐸 is the learnable embedding matrix, 𝐸𝑝𝑜𝑠 is the positional 

encoding that retains spatial information. Each patch 

embedding is given to transformer encoder. Self-attention 

allows the model to focus on different facial regions based 

on their importance for emotion recognition. The Multi-

Head Self-Attention (MHSA) mechanism is defined as per 

Equation 8. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉   

  (8) 

 

Where 𝑄, 𝑉, 𝐾, are the query, value and key 

matrices obtained by projecting the input feature maps, 𝑑𝑘 

is the dimension of key vectors for scaling. MHSA enables 

ViT to learn relationships between different facial regions 

without losing contextual information. Each transformer 

encoder block also contains a position-wise Feed-Forward 

Network (FFN), as per Equation 9. 

𝐹𝐹𝑁(𝑥) =
𝜎(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 

               (9) 

Where 𝑊1 and 𝑊2  are weight matrices, 𝑏1 and 𝑏2 

are biases, σ is a non-linear activation function.  Each 

encoder layer applies layer normalization (LN) to stabilize 

training as per Equation 10. 

𝐿𝑁(𝑥) =
𝑥−𝜇

𝜎+𝜖

  

  

            (10) 

Where 𝜎 and 𝜇 are the standard deviation and mean of the 

input. 

 

3.3.3 Proposed Hybrid Model  

The model incorporated MobileNetV2 and ViT by 

fusing their feature representations before classification. 

The CNN captures local spatial details, while the ViT 

captures model global dependencies. Mathematically, the 

feature fusion is defined as per Equation 11. 

𝐹𝐻𝑦𝑏𝑟𝑖𝑑 =

𝛼𝐹𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡𝑉2 + (1 − 𝛼)𝐹𝑉𝑖𝑇

             (11) 

 

Where 𝐹𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡𝑉2  represents extracted features 

from CNN, 𝐹𝑉𝑖𝑇 represents global transformer-based 

features, α is a learnable parameter controlling feature 

importance. The fused features are processed by fully 

connected layers a per Equation 12. 

𝑌 =
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑓 . 𝐹ℎ𝑦𝑏𝑟𝑖𝑑 +

𝑏)            

(12) 

 

Where weight matrix is denoted by 𝑊𝑓, 𝑏 is the 

bias, softmax activation converts the final output into 
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probability scores across multiple emotion classes. 

Hyperparameters such as learning rate, number of epochs, 

and batch size are critical in training the models, as they 

influence convergence speed, prevent overfitting, and 

ensure optimal model performance in FER. 

Table 1: Hyperparameters in the proposed model 

Parameters Values 

Optimizer Adam 

Learning rate 0.0001 

Loss Categorical Cross-entropy 

Activation function ReLU 

Epoch 50 

 

4. Result And Discussion 
To assess the effectiveness of the proposed 

Hybrid DL Model for Edge-Based Facial Emotion 

Recognition, standard evaluation metrics such as accuracy, 

precision, recall, and F1-score are used. Accuracy 

measures the overall correctness of the model by 

computing the ratio of correctly classified samples to the 

total number of samples. It is defined as per Equation 13. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

             

(13) 

 

Where, 𝑇𝑃 indicates true positive, 𝑇𝑁 denotes true 

negative, 𝐹𝑁 signifies false negative, and 𝐹𝑃 indicates false 

positive. Precision, also called Positive Predictive Value, 

measures the proportion of correctly predicted positive 

instances among all instances classified as positive. It is 

given as per Equation 14. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

   

             (14) 

 

Recall measures the model’s ability to correctly 

identify all relevant instances of a given class. It is defined 

as per Equation 15. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

                                               

(15) 

 

F1-score is the harmonic mean of precision and 

recall, balancing both metrics in cases where there is an 

imbalance in class distribution. It is computed as per 

Equation 16. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   

          (16) 

 

A high F1-score signifies that the model 

maintains a good trade-off between precision and recall, 

meaning it is both accurate and sensitive in detecting 

emotions. When training and evaluating DL models for 

edge-based facial emotion recognition, two key 

visualization tools are used to assess performance: the 

accuracy plot as shown in figure 5 and the loss plot as 

given in Figure 6. These plots help in monitoring the 

model’s learning behavior and detecting potential issues 

like overfitting or underfitting. In the initial epoch, the 

model achieved a training accuracy of 85.78% and a 

validation accuracy of 88.11%. As training progressed, it 

attained a training accuracy of 95% by the 33rd epoch, 

while the validation accuracy remained the same. Finally, 

in the last epoch, the model reached a training accuracy of 

96.01% with an improved validation accuracy of 99%. 

 
Figure 5. Accuracy plot of the suggested system 
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Figure 6. Loss plot of the suggested system 

 

The model initially started with a training loss of 

0.675 and a validation loss of 0.812. As training 

progressed, the training loss decreased to 0.392, while the 

validation loss showed a slight increase to 0.467. Finally, 

the model further reduced the training loss to 0.213, 

achieving a validation loss of 0.101. The confusion matrix 

as given in Figure 7 is a performance evaluation tool that 

visualizes the model's classification results. Figure 8 

presents the classification report of the suggested system, 

showcasing key performance metrics such as accuracy, 

precision, recall, and F1-score, which validate the model’s 

effectiveness in facial emotion recognition. 

 
Figure 7. Confusion matrix of the suggested system 
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Figure 8. Classification report of the suggested system 

 

The model achieved an accuracy of 98.51%, 

indicating a high overall correctness in classification, 

while the precision of 98.45% reflects its ability to 

minimize false positives. Additionally, the recall of 

98.99% shows the model's effectiveness in capturing true 

positives, and the F1-score of 98.71% demonstrates a 

strong balance between precision and recall, ensuring 

reliable emotion recognition. Figure 9 illustrates the 

prediction output of the suggested system, displaying the 

detected facial expressions along with their corresponding 

emotion. 

 
Figure 9. Prediction output of the suggested system 

 

5. Conclusion 
Computer vision applications, particularly in 

Facial Emotion Recognition (FER), play a crucial role in 

various domains such as healthcare, human-computer 

interaction, mental health monitoring, and security 

surveillance by enabling automated analysis of human 

emotions from facial expressions. The relevance of FER 

lies in its ability to enhance personalized user experiences, 

assist in early mental health diagnosis, and improve 

intelligent systems by enabling emotion-aware responses, 

making it a vital tool for modern AI-driven applications. 

This study presents a hybrid DL model integrating 

MobileNetV2 and a ViT for efficient and accurate Facial 

Emotion Recognition (FER) on edge devices. The 

proposed model leverages MobileNetV2 for lightweight 

yet powerful feature extraction, while the ViT captures 

global facial dependencies, enhancing the model’s ability 

to recognize subtle emotional variations. To enable real-

time FER, the trained model was deployed on a 

smartphone as an edge device, ensuring low latency, 

privacy preservation, and reduced computational overhead 

compared to cloud-based solutions. During testing, facial 

images captured by the smartphone underwent 

preprocessing before being classified by the model. The 

system was evaluated using standard performance metrics, 

achieving a high classification accuracy of 98.51%, along 

with superior precision, recall, and F1-score. These results 

validate the effectiveness of the proposed approach in 

recognizing facial emotions with minimal computational 

requirements, making it ideal for real-world applications. 
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